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Abstract

In sheared coherent beam interferometric imaging, an estimate of the average
reflectivity profile of the object can be computed from measurements of point-to-
point phase differences in the far field interference pattern and a suitable phase
reconstruction technique. The phase difference information is encoded in the irradi-
ance of three identical, shifted and superimposed speckled laser beam patterns. A
minimum variance phase reconstruction technique is presented to estimate the phase
of the field in the measurement plane from the phase differences and evaluate its per-
formance. Prior knowledge of the phase covariance is used in the minimum variance
reconstructor. Analytic calculations and computer simulations are used to evaluate
phase reconstruction errors as a function of object coherence area and spatial sample
spacing in the measurement plane. The performance of the minimum variance recon-
structor is compared to two least squares reconstructor implementations. Theoreti-
cal performance comparisons are made between the minimum variance reconstructor
and a new implementation of the least squares formalism. The new least squares
reconstructor uses the same error metric as the minimum variance reconstructor but
does not use any statistical information in estimating the measurement plane phase
function. Comparisons of the minimum variance reconstructor with a conventional
implementation of the least squares formalism are also made. The performance of
the minimum variance reconstructor is demonstrated for objects which are optically
smooth as well as optically rough. A small random double point source object is
used to demonstrate the near diffraction limited resolution of the minimum variance
wavefront reconstructor. Phase and image reconstructions are demonstrated for ex-
tended objects. Computer simulation is used to illustrate the performance of the
minimum variance reconstructor in the presence of additive white Gaussian noise

and estimation errors.
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OPTIMAL WAVEFRONT RECONSTRUCTION FOR A
COHERENT DIFFRACTED FIELD

1. Introduction
1.1 Problem Statement

The problem addressed in this dissertation is how to do optimal wavefront
reconstruction in a synthetic aperture coherent imaging system. The problem is ad-
dressed by developing a new minimum variance wavefront reconstructor which uses
object support information and the measurement plane phase covariance to esti-
mate a two-dimensional phase map in the Fraunhofer plane of the object. Computer
simulations are used to compare the actual performance of the minimum variance re-
constructor to its theoretical performance, and to compare the actual performance of

the minimum variance reconstructor to the conventional least squares reconstructor.

1.2  QOverview

Atmospheric turbulence effects limit the resolution which can be obtained in
images of space objects [1]. If incoherent imaging is performed without use of adap-
tive optics or a post detection image reconstruction technique the angular resolution
which can be obtained is given approximately by %, where 7y is the Fried seeing
parameter, and X is the average wavelength of the light. The angular resolution
obtained by diffraction-limited imaging is approximately %, where D is the tele-
scope diameter. For space object imaging, ro is typically much smaller than D, with
10 < % < 50 being typical. Pre-detection correction techniques, such as adaptive
optics [2, 3], and post-detection image processing techniques [4] can substantially

improve resolution beyond the % limit imposed by atmospheric turbulence. How-




ever, the ultimate limit of resolution for a filled aperture telescope imaging system

is imposed by the diameter of the telescope.

Active imaging techniques, which use laser illumination, can be used to form
synthetic apertures that have much greater effective size than the diameter of filled
aperture telescopes which can currently be fabricated [5]. Such systems can be used
to form images of space objects within the useful range of the illuminating laser
for applications such as monitoring the location and orientation of Earth-orbiting
satellites and space debris. The paradigm of operation for an active imaging system
is as follows. A laser, or a set of phase coupled lasers, are used to illuminate the
object. Radiation scattered from the object is measured in a distant plane. These
measurements are then processed to reconstruct an image of the object. Most sensor
systems and processing algorithms exploit the fact that the far field of the scatter-
ing object is proportional to the Fourier transform of the reflectance of the object.
However, the irradiance distribution of the scattered laser field suffers from coherent

speckle effects.

One synthetic aperture method, referred to as Sheared Coherent Interferomet-
ric Photography (SCIP), uses a three beam shearing interferometer system to encode
information about phase differences between spatial points on the scattered wave-
front as temporal variations of the irradiance in the far field [5]. Notice that (a)
the measurement points are very sparse within the aperture, and (b) the synthetic
aperture size is the area enclosed by the sparse set of measurement points. Informa-
tion about the modulus of the Fourier transform of the object is provided directly
by the irradiance measurements. The phase differences must be processed to recover
the phase of the Fourier transform of the object field. The phase reconstruction
process is complicated by the fact that, while the complex field in the measurement
plane must be continuous, the phase of the field in the measurement plane can be
discontinuous because of real zeros in the irradiance and because of the possibility

of 27 phase ambiguities which are difficult to resolve.




The reconstructor presented here provides continuous phase reconstructions.
However, the phase of the field in the aperture plane can have 27 phase discontinuities
which arise when the phasor representing the complex field in the aperture crosses
between the second and third quadrants of the complex plane. To overcome this
problem and provide a continuous phase for comparison, a computationally efficient
algorithm for unwrapping the 27 phase discontinuities [6] is used and the resulting
unwrapped phase is compared to the phase map obtained from the minimum variance
reconstructor. The phase in the aperture plane can also be affected by the presence
of real zeros in the field which arise from coherent speckle effects. Such points are
referred to as branch cuts. The phase of the field along a branch cut is discontinuous
and the phase difference across a branch cut is £27. The reconstructor presented
here provides continuous phase estimates across the 27 discontinuities associated

with branch cuts.

Some previous phase reconstructors have been iterative in nature, based on
the fact that the phase around any closed loop in the measurement plane must
sum to zero in the absence of noise and real zeros in the field [7, 8]. Hence, these
phase reconstruction techniques have treated the phase reconstruction process as a
deterministic problem. However, the phase reconstruction process is essentially a
stochastic problem, with randomness arising from uncertainty about the micro-state
of the reflective surface of the object. The phase reconstruction problem can thus be
addressed using statistical methods. In this dissertation, a minimum variance phase
reconstructor based on the correlation properties of the phase of a scattered laser
field is described. The reconstructor explicitly minimizes the aperture averaged mean
squared phase error. The complex field in the far field diffraction region of the object
has been shown to obey circularly complex Gaussian statistics [9]. The probability
density function of the phase of the far field and the spatial correlation function
of the phase in the far field of the object have been previously calculated (10, 11].

This phase correlation function is used in the development of a minimum variance




technique [12] to estimate the phase in the measurement plane of a coherent imaging
system. The reconstructed phase is combined with modulus information to form
an estimate of the complex field. An image is obtained by Fourier transforming the
measurement plane field, and averaging is used in image space to reduce measurement

noise, reduce speckle effects, and improve image quality.

The minimum variance reconstructor is implemented, and its performance is
assessed by theoretical calculations and computer simulation. For the input phase
differences provided by the SCIP detection process, the measurement is found to be
insensitive to 27 phase discontinuities. Continuous phase estimates are provided in
the region of branch cuts, which arise from real zeros in the measurement plane field.
An off-axis point source object is used to demonstrate that the minimum variance
reconstructor works for a simple, deterministic test case. The off-axis point source
object gives rise to a tilted plane in the measurement plane phase map. Recon-
structing the tilted phase plane demonstrates that the scaling and implementation
(throughput) aspects of the minimum variance reconstructor are correct and that
the minimum variance reconstructor can reconstruct the off-axis point source ob-
ject. The key statistical expressions in the minimum variance reconstructor are the
measurement plane phase covariances. The phase covariances are checked by imple-
menting the key matrices in the reconstructor in validation software and comparing

the resulting matrix elements.

After demonstrating that the minimum variance reconstructor works for a sim-
ple deterministic object and correctly determines the measurement plane phase co-
variances, the performance of the reconstructor is assessed for differing cases. The
first case describes the performance of the minimum variance reconstructor under
ideal conditions (no measurement noise, no randomness in the object phase, and no
estimation errors in object size). These conditions apply to an object which is smooth
on the scale of an optical wavelength (optically smooth) with no measurement noise.

The object average reflectivity profile used in the theoretical determination of the




optimal reconstructor was assumed to be Gaussian with infinite extent. In simulat-
ing the optically smooth object, the Gaussian average reflectivity profile was set to
zero outside the boundaries of the object support to create a truncated Gaussian
average reflectivity distribution. The truncated Gaussian average reflectivity profile
used in the simulation models the discontinuous average reflectivity profile along the

boundaries of the object.

The performance of the minimum variance reconstructor is assessed for the case
of optically smooth objects. The optically smooth object can be considered a special
case of the random scattering problem where the randomization of the amplitude
and phase are negligible. The results for optically smooth objects are expected to be
better than the results for optically rough objects for equivalent imaging conditions.
The performance of the minimum variance reconstructor is demonstrated for two
types of optically smooth objects. The first object has an average reflectivity profile
which is the product of a unit amplitude annular ring and a 2D Gaussian function.
The second object consists of the product of three equally spaced unit amplitude

horizontal bars and a Gaussian function.

After evaluating the performance of the minimum variance reconstructor for
the non-random case, a geometrically simple extended object is evaluated which is
rough on the scale of an optical wavelength. The object average reflectivity is rep-
resented by two random radiating point sources. The random double point source
object is used to determine the resolution of the optical system. The individual
point sources are symmetrically placed about the optical axis of the imaging system.
Reconstructed images resulting from averaging 100 independent image plane irra-
diance realizations are used to demonstrate that nearly diffraction limited images
are reconstructed by the minimum variance reconstructor. Besides demonstrating
the resolution of the optical system, the reconstructed image of the random dou-
ble point source object shows the ability of the minimum variance reconstructor to

image simple optically rough objects.




After presenting the results for the simple random scatterer, the performance
of the minimum variance reconstructor is assessed for optically rough extended ob-
jects with optimal viewing conditions consisting of no measurement noise, and no
errors in estimating the object size or object average reflectivity profiles. An image
for a small extended object is reconstructed and compared to the averaged coherent
image obtained from a filled 3 m x 3 m square collecting aperture. The theoretical
and simulated object average reflectivity profiles were both modeled as 2D Gaussian
functions with infinite spatial extent. The simulated reconstructed image is deter-
mined by averaging 100 independent image frames generated by using the minimum
variance formalism and noise free phase difference measurements. The average co-
herent image is obtained by averaging 100 independent images where each image

frame is formed by Fourier transforming the true aperture plane field.

The spatial sampling required to obtain good phase reconstructions is related
to the size and shape of the object. Spatial sampling effects were investigated as a
function of the sampling parameter, § = ﬁ, where L is the separation of the sam-
pling points in the measurement plane, and A, is the coherence area of the object.
It should be noted that the sampling parameter, 8, does not factor out of the anal-
ysis of the minimum variance wavefront reconstructor, but rather derives from the
physical intuition that the coherence area and the required sampling are closely re-
lated. Measurement plane two-dimensional phase maps are reconstructed for several
values of the sampling parameter, 3, and compared to the expected measurement
plane phase through simulation. Good measurement plane phase reconstructions
are demonstrated for B in the range 0 < § < 0.47. The aperture averaged mean
squared phase error is determined, and theoretical comparisons between the mini-
mum variance and a new least squares reconstructor shows better performance for the
minimum variance reconstructor. Simulated aperture averaged mean squared phase
errors are determined as a function of 3 for the minimum variance and least squares

methods. The simulated aperture averaged mean squared phase error is determined




for the minimum variance wavefront reconstructor and is compared to the simulated
aperture averaged mean squared phase error for both the new least squares wavefront
reconstructor and a conventional least squares wavefront reconstructor. Besides un-
derstanding the performance of the minimum variance wavefront reconstructor for
perfect viewing conditions, the effects of noise and errors in the estimation process

(such as errors in estimating the object size and average reflectivity) are of interest.

The performance of the minimum variance reconstructor is presented for ex-
tended targets and under conditions where imperfect model information is available.
Mismatches between the theoretical and simulated object average reflectivity profiles
are characterized. The theoretical object average reflectivity is assumed a Gaussian
with infinite spatial extent and the simulated object average reflectivity profile is
assumed to be a truncated Gaussian. The aperture averaged mean squared phase
error is determined for both the minimum variance and least squares methods for
this average reflectivity mismatched case. Both the new least squares wavefront re-
constructor and a conventional least squares reconstructor are used in the evaluation

of the aperture averaged mean squared phase error.

Spatial features are included in the simulated average reflectivity profiles of the
extended objects. The extended objects have average reflectivity profiles in the shape
of an x and a +. Mismatches between the theoretical and simulated object average
reflectivity shape are shown to have a negligible effect. Mismatches between the
theoretical and simulated object sizes were characterized in terms of the aperture
averaged mean squared phase error. The performance of the minimum variance

wavefront reconstructor is demonstrated in the presence of white Gaussian noise.

1.3 Summary of Significant Contributions and Results

This section describes the most important results obtained during the course

of this research. An enumerated list of the contributions and key results is as follows:




1.4

The minimum variance wavefront reconstructor is the first coherent wavefront
reconstructor which uses statistical information (in the form of measurement
plane phase covariances) to estimate the wavefront in the measurement plane
of a coherent imaging system. The impact of measurement noise and imprecise

knowledge of the object average reflectivity profile was evaluated.

The minimum variance reconstructor, unlike previously published least squares
reconstructors, allows for interpolation between sparsely sampled reconstructed

measurement plane phase estimates.

The performance of the minimum variance reconstructor in terms of the the-
oretical and simulated aperture averaged mean squared phase error is shown
to be superior to the performance of both a previously published conventional
least squares reconstructor and an alternative least squares reconstructor im-

plemented here.

A new least squares reconstructor was developed which provides for interpola-

tion between reconstructed measurement plane phase estimates.

Measurement plane phase reconstructions are demonstrated for values of 3 in
the range of 0 < B < 0.47. The theoretical and simulated object average
reflectivities used in reconstructing the measurement plane phases were both

Gaussian with infinite spatial extent.

The minimum variance technique provides near diffraction limited images for
a sparsely sampled measurement plane aperture (8 by 8 evenly spaced samples

in a 3 m square aperture).

Owverview of Dissertation

The remainder of the dissertation is organized as follows. Chapter II provides

background information. The SCIP technique summary in section 2.1 describes how

the atmospheric noise free phase differences are obtained. The use of the SCIP phase




differences in a conventional least squares wavefront reconstructor is presented in
section 2.2. The least squares reconstructor provides a two-dimensional phase map
in the measurement plane of the optical system. The phase map and amplitude
information are used to estimate the measurement plane field. Section 2.3 discusses

how the measurement plane field is used in the the image formation process.

Chapter III presents the theoretical framework for the minimum variance wave-
front reconstructor. Section 3.1 develops the error metric used in the performance
estimation process. To evaluate the error metric, expressions for the measurement
plane phase covariance and a reconstruction matrix are required. Section 3.2 dis-
cusses the determination of the measurement plane phase covariances. Section 3.3
describes the derivation of the minimum variance reconstructor. Section 3.4 de-
scribes the derivation of a new least squares reconstructor which has the same error
metric as the minimum variance wavefront reconstructor. Theoretical expressions
for the aperture averaged mean squared phase error for the minimum variance and

least squares formalisms are derived in Section 3.1.

Chapter IV presents the results. Section 4.1 shows the performance of the
minimum variance wavefront reconstructor for the case of noise free optically smooth
objects. The optically smooth object case is expected to have better performance
than the random object case for similar imaging conditions. Section 4.2 uses the
random double point source object to demonstrate that the reconstructor works for
simple extended objects that are rough on the scale of an optical wavelength. Section
4.2 is also used to demonstrate that the minimum variance wavefront reconstructor
can be used to create images with diffraction limited information. Section 4.3 treats
optically rough extended objects under optimal viewing conditions (no noise and no
estimation errors). Section 4.4 evaluates the performance of the minimum variance
reconstructor for optically rough extended objects under conditions where imperfect
model information is available. Mismatches between the model and actual object

average reflectivity are related to the performance of the minimum variance wavefront




reconstructor. The aperture averaged mean squared phase error is shown to be larger
for the case when the model and the object are imperfectly matched. Mismatches
between the theoretical and simulated size of the object average reflectivity profile
are shown to have minor effects on the reconstructed images under a wide range of
conditions. Finally, the performance of the minimum variance reconstructor in the

presence of additive, Gaussian, white noise is addressed.

Chapter V presents the conclusions, summarizes the significant contributions,

and addresses future areas of research.
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II. Background

This section provides the specialized background information required for the
rest of the dissertation. Section 2.1 discusses the SCIP imaging technique which
provides phase differences on a measurement plane grid of points for every pupil
frame. The SCIP generated phase differences are used as inputs into a wavefront
reconstructor. Conventional coherent least squares wavefront reconstructors are dis-
cussed in Section 2.2. Section 2.3 discusses the image formation process and shows
that for coherent imaging, the time averaged image is identical to that obtained with

the incoherent optical transfer function.

2.1 Sheared Coherent Interferometric Photography

When a scattering surface which is rough on the scale of an optical wavelength
is illuminated by a laser, a random complex-valued electromagnetic field appears in
the far field with point statistics described by circularly complex Gaussian statistics
[9]. In the far field region of the object a speckled irradiance distribution is observed
[13]. The SCIP technique is a method for measuring phase differences on a grid of
points in an aperture. The SCIP technique is a synthetic aperture technique in the
sense that no filled aperture is required. Rather, the aperture is defined by the area
enclosed by a set of irradiance measurement devices. Phase difference information
is encoded in temporal variations in the irradiance measurements. The measured

phase differences provide the input to the wavefront reconstructor.

The measurement geometry is shown in Figure 1. Three illuminating laser
beams are spatially separated from one another as illustrated in Figure 1. The three
beams are used to simultaneously illuminate an object located in the far field of
the illumination plane. The separation of the illuminating beams are in orthogonal
directions, and are denoted by the vector separations s; and s;. In addition to

the spatial separation, two of the beams are frequency shifted with respect to the
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Figure 1. Illumination geometry.

third beam. The relative shifts in frequency of the two beams, v, and v, results in
separate temporal modulations relative to the third beam. The shifts are relative
to a reference frequency, vy = % , where c is the speed of light and ) is the center
wavelength of the reference beam. As shown below, the frequency shifts allow for the

encoding of phase difference information in the propagating electromagnetic waves.

The SCIP technique is of interest for imaging earth-orbiting objects because
it is insensitive to atmospheric turbulence effects. As the three beams propagate
through the atmosphere toward the object their phases become distorted. Since
the majority of phase aberrations in the illumination process occur in the near field
of the illuminating beams, diffraction of the propagating beams ensures that the
three beams are mutually spatially coherent by the time they reach the object.
Since the illuminating apertures are typically less than 0.3 meters in diameter, the

spatial irradiance profile of each of the illuminating beams in the far field object
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plane is approximately flat. Hence, atmospheric effects due to propagation from the
illuminating aperture to the object are negligible. The mutually coherent beams are
overlapped on the object, and strike the object at slightly different angles due to
the separation of the illuminating beams. The three superimposed beams interact
with the object, which is assumed to be rough on the scale of an optical wavelength.
In the far field of the scattering object, each beam causes a speckled irradiance
distribution. A change in the angle of incidence of an illuminating beam results in
the reflected speckle pattern shifting in an equal and opposite amount. The reflected
fields experience the same object reflectance but leave at slightly different angles. The
beams are scattered by the object and give rise to three overlapping speckle patterns
in the receiver plane. A key feature of the SCIP technique is that the reflected fields
propagate through essentially the same atmosphere while en-route to the receiver
plane. As shown later, this results in the phase differences between the propagating

beams being insensitive to atmospheric distortions.

The field in the receiver plane consists of the superposition of three identical
fields which are shifted (or sheared) with respect to one another [5]. The measure-

ment plane irradiance at a given instant is given by,
T(&1) = |uo (1) + ug (T + 5ut) +uy (T + 8 1)1, (1)

where 7 is a two-dimensional position vector in the measurement plane. The quanti-
ties 5, and §, represent the measurement plane vector separations between the three

fields. The individual field quantities are given by,

uo (T;t) = A(Z)expjo(Z)exp j2mipt,
Ug (£ +35t) = A(T+85;)expjo (Z + 3;) exp j2m (vo + Vz) 1, (2)

u, (T+8,;t) = A(@H+35)expjo(Z+35,)exps2m (v + 1)t
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The complex field, ug, is the reference field. The complex fields u, and u, represent
the sheared field in the z direction and the sheared field in the y direction, respec-
tively. The frequencies v, and v, are the frequency shifts in the z and y sheared
beams, respectively. The quantities A (-) and ¢ (-) represent the position dependent
amplitude and phase of the corresponding reference, z sheared and y sheared fields.
The temporal dependence of the A(:) and ¢ (-) terms is neglected because these
quantities are object dependent, and it is assumed that the measurement interval is
short compared to the time scale of the object variations. Expanding the square in
equation (1) and regrouping terms allows the measurement plane irradiance to be

expressed as [14],

I(Zt) = @I,(Z) {1+ V;(Z)cos 2105t + Ady (T)]
+ V(%) cos [2myyt + Ay (Z)] + Vay (&) cos [27(ve — vy)t + Ay (@)},

(3)
where the mean irradiance at I, (Z) is given by,
I (Z) = {Juo D) + ue (& + 5)| + uy (F+5,)}. (4)

The quantity, I,,, (), is the time averaged irradiance in the measurement plane due
to all three fields. The visibility factors associated with the three temporal frequency

components in equation (3), vz, vy, and v, — v are given by,

Ve (&) = 2In (&) uo (&) up (Z+ 5),
V, (@) = 20 (2) 7" [uo () ) (F+3,)], (5)

Vi (B) = 20, (@)

up (Z+ 5) u (Z+ 5)|
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where the asterisk represents complex conjugation. The phase differences in equation

(3) are given by,

Agy () = ¢(@)—¢(T+35), (6)
Aoy (F) = ¢(EF+5)—d(F+35).

In the subsequent analysis only the first two phase differences are required.

We can now demonstrate the insensitivity of the SCIP technique to turbulence
effects along the path from the object to the aperture plane. To illustrate this point,
consider the effects of turbulence on two of the wavefronts, ug (Z,t) and u, (Z + 8z, t).
After reflection, the two beams propagate through the same atmosphere and acquire
the phase aberration, 9 (Z). The effect of this phase aberration on the measurement

plane irradiance is encoded in the term,

Uo (T, 1) wh (& + 5z, t) = A(E) A (T + 55) exp (A () — 2mvat + ¢ (F) — ¢ (7)) -
(7)
Since at the point, Z, the fields ug (Z,t) and u, (& + §;,t) experience the same atmo-
spheric phase distortion the resulting phase difference illustrated in equation (7) is

insensitive to atmospheric phase perturbations.

By taking the temporal Fourier transform of the measurement plane irradiance
in equation (3) at each sampling point in the measurement plane the following
relationship is obtained,

Vs (Z)
2

I(Z,v) = I,(Z) {6 (v) + § (v — vy) exp {jA¢, (Z)}

+ Vzéf)é (v + ;) exp {—jAd, (£)}
Y 2@ 6 (v — v,) exp {jAdy (7))
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LY 2@5 (v +1v,) exp {5 A0, (2)}

+ szz(f)é (v — (vo — 1)) exp {jA¢qy (%)}
b D501 - 1y) e (500 @)} ®

A narrow band filter centered at either v, or v, provides the appropriate phase dif-
ference measurement. For example, to obtain the phase difference in the z direction,
a narrow band filter centered at frequency, v, leads to the following relationship

between the irradiance spectrum, I (Z,7,), and the phase difference A¢, (£) ,

1(@,v2) = 31 () Ve () exp {1262 (D} (9)

The above expression provides the relationship between irradiance measurements at
discrete points in the measurement plane and the desired phase differences at that
point. The phase difference in the z direction can be evaluated by the following

relationship, A

A¢, (&) = tan™! (C‘W (2, ””))) . (10)

R (1 (Z,v2))

The operator, S (+), represents taking the imaginary part of the argument. The op-
erator, R (-), represents taking the real part of the argument. Another filter centered
at v, can be used to obtain the phase difference in the y direction. Equation (8)
is then evaluated at v, and similar expressions to equations (9) and (10) result
for phase differences in the y direction. The SCIP technique provides phase differ-
ences, which are known modulo 27, on a grid of points in the measurement plane
[5, 14]. The phase differences obtained in this manner are mapped into the range of
—m < A¢, (£) < 7. The insensitivity to 27 phase discontinuities can be seen from
equations (9) and (10). The complex exponential is insensitive to any arbitrary
addition or subtraction of 27 to its argument. The phase reconstruction technique
discussed here uses the phase difference measurements obtained by the SCIP method

combined with a minimum variance technique to estimate the measurement plane
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phase. In the next section, the conventional least squares method of phase estimation

is discussed and related to the SCIP phase difference measurements.

2.2 Conventional Least Squares Reconstructors

The phase differences provided by SCIP are input to a wavefront reconstructor
in order to reconstruct the measurement plane phase. This section discusses the
least squares formalism to the phase reconstruction problem. The least squares
reconstructor discussed uses deterministic methods to estimate the two-dimensional
(2D) phase map in the measurement plane of the imaging system, neglecting the
statistical aspects of the phase reconstruction process. The conventional least squares
reconstructor directly minimizes a squared error metric (such as the squared phase
error or squared phase difference error) without using statistics. Since no statistics

are used in the least squares method, the solutions are deterministic.

The reconstruction of two-dimensional phase surfaces from phase difference
measurements has been of interest to researchers in adaptive optics and speckle
imaging for a number of years. The reconstruction process involves transforming
noisy phase differences into a 2D phase surface in the measurement plane of the
imaging system. Previous work [15, 16] was directed at reconstructing the phase
map on a 2D grid of points using a least squares formalism. Figure 2 illustrates the

points of reconstruction in the measurement plane.

In Figure 2, the quantities N, and NN, correspond to the number of sample
points in the z and y direction, and L, and L, represent the distance in meters
between the sample points in the z and y directions, respectively. The coordinates
j and k are indices which denote the sampled phase locations in the measurement
plane in the z and y directions, respectively. An often used least squares solution

6, 8, 16, 17] minimizes the squared phase error summed over a discrete set of points
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Figure 2. Measurement plane grid.

in the measurement plane aperture,
g — 2
e =32 (6(@n) — ¢ (Tin)) " (11)
ik

where the symbol, ¢' (), represents the phase estimate at grid coordinate, Tjk-

The least squares solution is specified in terms of the following recursive equation,

¢ (Tix) = (6 Fjrip) + ¢ @irp) + ¢ (Tip+r) + & (Tjk-1)) (12)

_+_

N I

(A (Tj) — Ay (Tj—1k) + Ay (Tjin) — Ady (Tjk-1))

where the phase differences in equation (12) are given in equation (6). Note that
equation (12) only provides phase differences on a grid of points in the measurement

plane and not everywhere in the aperture. Other least squares implementations exist
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which minimize the sum of squares of the difference between the actual and estimated
phase differences [18]. Equation (12) can be iteratively solved to estimate the phase
on a finite grid of points in the measurement plane [16]. Other solutions similar
to equation (12) can be formulated by summing over different closed paths on the
grid. A common feature of the recursive least squares phase reconstructors is that
they are based on a path integral approach where the sum of the phase differences
around any closed path sums to zero. A matrix formulation of solving the least
squares phase estimation problem has been developed [17]. Properly constrained, this
matrix algebra method was shown to give results similar to the recursive approaches

illustrated in equation (12).

Additional complications result in reconstructing the measurement plane 2D
phase map when the object is illuminated by coherent light. The irradiance distri-
bution in the Fraunhofer plane of the object can have isolated zeros. In the case of
an isolated zero, neighboring phases can assume discontinuous values resulting in 27
ridges in the 2D measurement plane phase map [19]. The ridges in the measurement
plane 2D phase are referred to as branch cuts. Summed phase differences around a
closed path containing an isolated zero do not sum to zero. The conventional least
squares iterative solution given in equation (12) requires modification to account

for the presence of isolated zeros and the associated branch cuts.

To adapt the conventional least squares formalism to the case of coherent
illumination, the sum of the phase differences along any enclosed path on the mea-
surement grid was allowed to vary [8]. This was done to permit the summation
around an isolated zero in the measurement plane field. To account for the presence
of isolated zeros in the measurement plane field, the sum of the phase differences
around any closed path in the measurement plane were allowed to vary in integer

multiples of +27.

In the SCIP detection process, the phase difference between neighboring grid

points was wrapped into the principal value of 7. The actual sign and magnitude of
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the phase difference is given by equation (10). The wrapping of the phase differences
into their principal values was done to reflect the inability of the measurement system
to distinguish the integer value associated with the 427 increments added to the

phase at any given grid coordinate.

A different ridge-like type of phase discontinuity which appears similar to
branch cuts arises in the measurement plane phase function. These ridges result
from the complex exponential representation of the measurement plane field. Specif-
ically, the phase is represented as the argument of a complex exponential. Phases
whose magnitude exceed the value of w (such as is possible, for example, for tilted
phase planes arising from off-axis objects which resemble point sources) are auto-
matically wrapped into the principal region 7 by subtracting integer multiples of
27. Phase differences across the phase ridge have a constant magnitude of 27. To
distinguish between the 27 discontinuities associated with branch cuts, these phase

ridges will be denoted as 27 phase wraps.

The presence of branch cuts and 27 phase wraps lead to discontinuities in the
measurement plane phase, and limitations in data collection systems result in the
measured phase differences being restricted to their principal range of (—m, 7). By
using a 2D phase unwrapping technique [6], integer multiples of 27 are added to
the phase in the reconstruction process to account for these discontinuities. Figure
3, illustrates a branch cut from an object with an angular subtense of 0.4333 prad.
The simulation will be discussed later. The branch cut originates in the lower right
quadrant of Figure 3. The branch cut runs from the bottom to the top of the right
half of the figure. The magnitude of the phase difference across the branch cut is 27.

Ghiglia and Romero (G & R) have recently implemented the coherent version
of the least squares phase reconstructor in a fast, non-iterative manner using Discrete
Cosine Transforms [6]. This reconstructor was used in the simulation process for the

following two purposes:
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Figure 3. Branch cut in measurement plane phase.

1. Unwrap the measurement plane reference phase to eliminate 27 phase ambi-
guities. The phase differences determined from the unwrapped measurement
plane phase map is consistent with the phase differences obtained from the

SCIP technique.

2. Provide a representative least squares phase estimator with which to compare
simulation results between the conventional least squares and minimum vari-

ance formalisms on a grid of points in the measurement plane.

The G & R phase reconstructor minimizes the same error metric as the iterative least
squares reconstructors discussed in equation (12). The iterative solution illustrated
in equation (12) is re-cast by Ghiglia and Romero into a discrete version of Poisson’s
equation with Neumann boundary conditions on a rectangular grid [6,8]. The G &R
phase reconstructor is applicable to the coherent phase estimation problem and can

reconstruct measurement plane phase maps with branch cut discontinuities. The fast
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(non-iterative) nature of the reconstruction process makes the G & R reconstructor a

suitable choice for comparing the minimum variance wavefront reconstruction results.

This section has discussed how conventional least squares techniques are used
to reconstruct a 2D phase map in the measurement plane of a coherent imaging
system. The inputs to the least squares reconstructor can be in the form of phase
differences such as those provided by the SCIP technique. The next section provides
a brief overview of coherent imaging and illustrates how the 2D phase map provided
in the previous section can be combined with spatial amplitude information and

processed to produce an image of the object.

2.3 Image Formation and Measurement Plane Statistics

The first section of this chapter discussed how the SCIP technique provides
phase difference information on a grid of sample points in the measurement plane
of a coherent imaging system. The second section discussed how the phase differ-
ences can be used with a conventional least squares reconstructor to estimate the 2D
phase map in the measurement plane of the imaging system. This section discusses
how a sequence of estimated measurement plane phases can be merged with field
amplitudes and processed to produce an image of the object. In addition, motiva-
tion of the underlying statistical assumptions required to implement the minimum
variance reconstructor will be discussed along with the required aspects of coherent
imaging theory. For the purpose of developing the minimum variance reconstructor,
the quantity of interest in the object plane is the reflected field. The spatial corre-
lation properties of the reflected field can be used to determine the mutual intensity
in the object plane. The mutual intensity is propagated to the measurement plane
and converted to the complex coherence factor. The complex coherence factor is
used in the minimum variance phase reconstruction process. The clearest approach

is to start the discussion in the plane of the object, propagate to the measurement
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plane of the imaging system, form the complex field, calculate the image field, and

illustrate how the averaged coherent image is formed.

As discussed previously, the three illuminating fields are spatially and tempo-
rally coherent with one another in the plane of the object and just prior to making
contact with the object. Since the object is man made, the surface of the object
is assumed to be rough on the scale of an optical wavelength. The phase of the
reflected wave becomes random, having point phase statistics which are uniformly
distributed between —m < ¢ (F,) < 7 [13]. The time scales of the measurement
process are controlled by the receiver plane detectors and are assumed short enough
to freeze a realization of the speckled irradiance pattern. The reflected field can be
described by circularly complex Gaussian random variables [9]. This means that
the real and imaginary parts of the field are represented by independent, zero mean
Gaussian variates with equal variances [13]. For circularly complex Gaussian (CCG)
random variables, the variance of the real and imaginary parts of the field is equal
to half the ensemble averaged average reflectivity. An additional assumption is that
the object is not a strong absorber and that most of the randomization is due to the

phase and not the amplitude.

The correlation properties of the reflected field can be used to determine the
mutual intensity of the object. The reflected field is assumed uncorrelated with itself
for point separations greater than the center wavelength of the illuminating light.
Figure 4 shows the coordinate system used between the object and measurement
plane. If Z,; and Z,; are arbitrary points in the object plane then the mutual

intensity is given by [13],

J(fol, 502) = <’LL (-’ifol, t) 'LL* (12‘02, t)) y (13)

where u represents the field, the asterisk represents complex conjugation and the

brackets denote the statistical expectation operator. The object plane average re-
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Figure 4. Object to Measurement Plane Coordinate System.

flectivity can be obtained at any point by letting Z, equal Z,,. Since the CCG
field is assumed to become uncorrelated at spatial separations larger than an opti-
cal wavelength, the mutual intensity is non-zero only at points where Z,; and T,

coincide. The mutual intensity in the object plane can then be written as,
J (Zo1, Toz) = kI (Zo1) 6 (o1 — To2) (14)

where Kk = %X for objects with spatial coherence on the order of the illuminating
wavelength and where the resolution of the optical system is coarser than the spatial
coherence length [13]. The quantity I (Z,1) is the ensemble averaged reflectivity at
point #,; and 6 (-) represents a 2D Dirac delta function. The mutual intensity in
equation (14) is identical to the mutual intensity for an incoherent source. For
the purposes of evaluating the mutual coherence function, the average reflectivity
distribution of the object can be considered equivalent to an incoherent radiator.
This analogy permits the use of the Van Cittert-Zernike theorem to propagate the

mutual intensity from the object plane to the measurement plane [13].

For the case of imaging space based objects from the Earth, the following

assumptions are usually satisfied.
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1. Source and receiver dimensions are small compared to the separation between

the object and measurement plane.
2. Only small angles with respect to the optical axis are involved.
3. Assumptions required for the paraxial approximation are appropriate.

If the above assumptions are valid, then the relationship between the mutual intensity

in the measurement (pupil) plane &, and source (object) plane T, is given by,

J (Zp1; Tpo) = 5\ 5 Zo ZOI Z,) exp[ % (Zpr — Tpa) - T ] dz,. (15)

The phase factor, 1, is given by,

¥ =+ [|Enl® - 17l (16)

ak

As is seen in equation (15), the measurement plane mutual intensity is given by
Fourier transforming the incoherent object average reflectivity and evaluating at
spatial frequencies,

(Tp1 — Tp2)

oy and fy= (¥ — 452) — ) (17)

f:c = Nz )

where, T,1 — Zp2 and Yp1 — Ypo is the z and y separation along the = and y axis in
the measurement plane, respectively. The complex coherence factor is obtained by

normalizing the mutual intensity in the following fashion,

J (J,‘pl, Yp1; Tp2, yp2) (18)

M (xplaypl; $p2>yp2) = % ,
f f I(xolayol)dxoldyol
—00 —00

where z,; and y,; are z and y coordinates in the object plane, respectively. As will
be seen later, the complex coherence factor is required in the determination of the

essential phase covariance function in the minimum variance phase reconstruction
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formalism. The average irradiance at a point in the measurement plane is obtained

by setting the coordinates T, = &p2 in equation (15).
The measurement plane field is related to the reflected object field in the
Fraunhofer limit by [20],

[o ole o]

. exp(jkz ko . 21, . -
U(Zp) = —I;()\Jz—) exp [j—Q—zlmp|2] / / U (Z,) exp [—j; (Zp - a:o)] dz,, (19)

—00 —00

where, z, is the object plane to measurement plane distance. The parameter k = 2;"

is the wave number. The measurement plane field is obtained from the object field by
a Fourier transform relationship. The instantaneous irradiance at a given position in
the measurement plane can be obtained by Fourier transforming the reflected object
field in accordance with equation (19) and multiplying by its complex conjugate. The
underlying point statistics of the measurement plane field also obey CCG statistics
[10]. Since the expected value of the real and imaginary parts of the measurement
plane field are each zero, the magnitude of the field at a given point can assume small
values, or be identically zero. The 2D phase of U (Z}) is obtained from equation (19)
by the arctangent of the real and imaginary parts of the field at every point,

Ly (SWU(E))
¢ (Z,) = tan (W) . (20)

The resulting measurement plane phase associated with the regions where the irra-
diance is zero results in the formation of branch cuts. The field at an observation
point reasonably distant from the object consists of the superposition of dephased
coherent radiators. The coherent radiators arise from different microscopic coherent
elements on the object. The interference of the dephased coherent radiators is the
physical process which leads to the formation of granularity or high contrast regions
in the measurement plane irradiance [13: 347-359]. This granularity is commonly

called the speckle effect.
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The combination of the SCIP technique and the minimum variance wavefront
reconstructor can be used to estimate the measurement plane field. The relationship
between the measurement plane field and the image plane field is also given by
a Fourier transform. The image field is formed by spatially Fourier transforming
the measurement plane field. The instantaneous image irradiance is given by the
modulus squared of the image plane field. The instantaneous image plane irradiance
is also speckled. Averaging independent image frames will significantly reduce the

amount of speckle in the resulting averaged image.

In Chapter IV, the averaged image irradiance obtained from the synthetic aper-
ture SCIP technique and the minimum variance measurement plane phase estimates
are compared to a computer simulated ensemble averaged image irradiance obtained
from a filled aperture coherent imaging system. A theoretical description of the sta-
tistical properties of the ensemble averaged image irradiance is useful in predicting
the results of the coherent imaging process. A linear systems approach is used to
relate the statistical properties of the reflected object field to the ensemble averaged

image irradiance.

It has been determined that for a coherently illuminated source the underlying
probability density function of the reflected object field is that of a circularly complex
Gaussian random variable [9]. For a linear, shift invariant system, the image field

can be obtained from the object field by convolution,

[e o]
9(#) = [ f(@)h (@ - 2)d, (21)

—0
where h (-), the impulse response of the system, is equal to the appropriately scaled
Fourier transform of the measurement plane pupil function [20], Z, is a position
vector in the object plane, &, is a position vector in the image plane and f (-) is the

object field given by,
f (fo) =t (fo) d (io) . (22)
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The function, ¢ (-), is a masking function which provides the 2D object details. The
function, d (+), is a random diffusive element which embodies the statistics of the

field. The object autocorrelation is given by,
Rff (folyfﬂ) =t (fol) t* (-7_/"02) Rdd (fol - 502) . (23)

Here the diffuser amplitude is assumed wide sense stationary. Note that the object

field autocorrelation is not stationary.

In computing the image statistics for a diffusely scattering object, the object
field autocorrelation width is typically very narrow compared with the impulse re-
sponse of the optical system. The reflected object field becomes uncorrelated for
spatial separations larger than the center wavelength of the illuminating light. This
results from the optically rough surface features of the object randomizing the phase
of the reflected field. The autocorrelation of the diffusive part of the object field can

be approximated by a Dirac delta function,
Rag (Zo1,Zo2) = 6 (To1 — To2) - (24)

The mean of the image amplitude is found to be zero. This can be seen by taking
the ensemble average of the convolution expression above and noting that (f (Z,)) is
zero. Since the image amplitude mean is zero, the variance of the image amplitude

is found to be equal to the mean irradiance.
o2 (&) = (I (). (25)

The subscript, g, represents the image plane amplitude. The variance of the real
and imaginary parts of the image field are identical and are each equal to half the

mean irradiance at the image point of observation [13|. The output autocorrelation
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of a linear space invariant system is related to the input auto correlation by [21],
Rgg (fph fp?) = Rff (fola 33’02) * h (fpl) * h (fp2) : (26)

By inserting the values for Ry (Zo1,Z02) into the preceding equation the following

surface integral over the object plane results,
Ryg (@1, B) = [ 1t @or) P (@t = Eor) B (B2 = For) dZon (27)

The above expression indicates that the image amplitude autocorrelation depends
on the impulse response of the system and also the magnitude squared of the trans-
mission function of the object modulating transparency. The mean image irradiance
is obtained by letting &,; = &2 in equation (27) for the image amplitude autocor-
relation,

(I (&) = Ryg (&, Zp) = [t (Za)|” * R (Z)[" (28)

This equation indicates that the average transfer function for a coherently illumi-
nated diffuse object is the incoherent optical transfer function. In other words, the
mean irradiance of the image for a coherently illuminated diffuse object is the same

as if the object were replaced by an incoherent object having the same average re-

flectivity.




III. Theory

This chapter introduces the theoretical formalism for the minimum variance
reconstructor. In the first section, a generalized error metric is developed which will
allow comparison between the minimum variance and least squares class of wavefront
reconstructors. The error metric is the aperture averaged mean squared phase error.
As will be seen in section 3.1, this error metric is expressed in terms of a system of
linear equations which are presented in matrix and vector notation. The governing
matrices are the phase difference correlation matrix, ®,,,, the elementary function
correlation matrix, Rk, the elementary function/phase/phase difference interaction
matrix, A;,, and the reconstruction matrix, Mj;,. The generalized error metric dis-
cussed in section 3.1 is expressed in terms of these four matrices and the phase
differences obtained from the SCIP technique. The minimum variance formalism
determines an optimal reconstruction matrix, M;,, by minimizing the error metric
with respect to the reconstruction matrix elements. The resulting reconstruction
matrix is used to estimate a 2D measurement plane phase map which provides the
minimum error in terms of the specified error metric. To evaluate all but the ele-
mentary function correlation matrix, R, evaluation of the measurement plane phase
covariances is required. Section 3.2 develops the phase covariance function required
in the generalized error metric of section 3.1. In order to evaluate the generalized
error metric, a specific form of the reconstruction matrix, M;,, must be determined.
A derivation of a reconstruction matrix based on the minimum variance formalism
is provided in Section 3.3, and Section 3.4 presents a reconstruction matrix based
on least squares methods. Substitution of these matrices into the generalized error
metric provides for a theoretical comparison of the expected aperture averaged mean
squared phase error for the minimum variance and least squares methods. Section

3.5 discusses the computer based implementation of the minimum variance theory
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and its functionality. Finally, section 3.6 discusses how additive white Gaussian noise

is incorporated in the theoretical model and computer simulation.

8.1 Phase Reconstructor and Generalized Error Metric

This section discusses a convenient error metric which provides a means for
comparing the minimum variance reconstructor with other reconstructor implemen-
tations. Evaluation of the error metric requires knowledge of the measurement plane
detection system, a choice of elementary functions, an expression for the measure-
ment plane phase covariance. and an expression for the measurement plane covari-
ance of the noise. For the SCIP process, the measurement system consists of a
spatial grid of irradiance sensors. Irradiance measurements are converted to phase
differences by the SCIP technique and the phase differences are used as inputs to
the minimum variance phase reconstructor. The input phase differences are denoted

by, A, (Z,), and are defined as [14],
Adg (Fn) = ¢ (Zn) — ¢ (Zn + 5) + 1. (Zn), (29)

where %, is a two-dimensional vector position of the n'* measurement point in the
measurement plane of the imaging system. The quantity, n (&,), represents zero
mean additive white Gaussian noise. The noise and measurement plane phase are
assumed to be statistically independent from one another and are uncorrelated with
each other. The quantity §, is the vector shear in either the z direction, denoted by
§y, or the y direction denoted §,. The estimate of the phase, QAS(:E'), is obtained by a

linear combination of elementary functions, r; (Z):

(@) =Y ¢ (@), (30)
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where ¢; is the weight associated with the 4% elementary function. Gaussian ele-

mentary functions of the form,
ri (&) =e R, (31)

were used in the theoretical development and simulation of the minimum variance
wavefront reconstructor and the new least squares wavefront reconstructor. The
quantity, R, is an adjustable decay parameter. It is useful to define a vector of

ordered phase difference measurements, A¢, given by,

: (32)

where M is the total number of sampling elements in the measurement plane, and
the nt" element of the A¢ vector is denoted by A, . With the definitions in equation
(32), the weighting coefficients, ¢;, in equation (30) are given by a linear combination

of the phase difference measurements [14]:

2M
¢ = Z Mjn Adn, (33)
n=1

where the matrix, M;,, maps phase difference measurements to elementary function
weights. The matrix, M;,, is referred to as the reconstruction matrix and has di-
mensions of M x 2M. The proper choice of M;, can minimize the aperture averaged
mean squared phase error between the actual phase and the estimated phase. The

error between the true phase at position Z in the measurement plane of the imaging
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system and the estimated phase at the same spatial location is given by [12],

e = ¢(@)
= ¢(@)

~

— 0 (Z)
- Z ;MjnA¢n T‘j (.’Z")

J

8y

(34)

The mean squared error at a point is formed by squaring the above term and taking

the expected value of the result,

(@) = (F@)-25 X Minr;(@) (¢ (&) Adu) +
Z Z ; ZMkm Tk (.’f) Mjn Tj (f) <A(]5n A¢m> y (35)

where the brackets, (-), represent the statistical expectation operator. The aperture

averaged mean squared phase error is defined by,

o0

(&) = / dZW 4 (Z) (¢ (8))- (36)

The aperture function, W4 (Z), is non-zero inside the clear aperture of the measure-
ment plane, and is zero outside of the clear aperture. It is useful to define the value

of W4 (Z) inside the aperture so that,
oo
/ diW, (Z) = 1. (37)
—o0
By substituting the expression for (€2 (%)) in (35) into the equation in (36) and

interchanging orders of integration and summation, the aperture averaged mean

squared phase error is seen to be [12, 22]:

() = 505 5 MonMim (86086m) [ dEWa ()7 @) (@)

2 Y X M [ dE (W ()73 () (3609 @)
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+ / dFW, (3) (¢ (). (38)

Following Wallner [12], considerable notational simplification in equation (38) results

by making the following identifications,

Rp = [ dEWa@r; @ (@)

A = [ AFWA(@)7; @) (A (@),
(@) = [ azma@ (e @),
Bum = (AbnAdm). (39)

Inserting the above identifications into equation (38) leads to,

(c?) = X]: 5 5 My Mo By - zzjj > MinAjn + (3).  (40)
The above generalized error metric represents the aperture averaged mean squared
phase error in the measurement plane of the imaging system. Equation (40) provides
the theoretical basis of comparison for the least squares and minimum variance for-
malisms. In order to evaluate the error expression in equation (40), expressions for
the reconstruction matrix, Mj;,, the phase covariance, (¢ (¥) ¢ (5’)), and the noise
covariance, (n (Z)n (:1?’ )}, must be determined. The requirement for an expression for
the noise covariance stems from substituting the phase differences in equation (29)
into the last term of equation (39). An expression for the noise covariance is given
later in this chapter. The reconstruction matrix, M;,, depends on the optimiza-
tion method used (least squares, minimum variance) and will be discussed shortly.
The determination of an expression for the measurement plane phase covariance is

discussed first.
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3.2 Measurement Plane Phase Covariance

In order to evaluate the minimum variance optimal reconstruction matrix and
the subsequent expected minimum error, it is necessary to determine the phase
¥ =

correlation function, (¢ (Z) ¢ (¥')). An expression for the phase correlation function

is required in evaluating the expectations in equation (39).

The correlation function of the phase is given by [11]:

(¢(D) ¢ (@) = [1+27 = 49" + 52 ()| -7, -7 < (@), 6(@) <7, (41)
where,
= is1n
Y= 27 Ko,
and,
_ 63
Q (lu‘o) = 2 712::1 n2

In equation (41), the coordinates & and &’ are arbitrary points in the measurement
plane. The parameter pg is the complex coherence factor of the object and is given

by,

o (2,8) = | ——e DL ) (12)
Y u

where the asterisk represents complex conjugation, the parameters u (Z) and u (')
represent the measurement plane field at coordinates Z and &', (-) represents the
statistical expectation operator, and the spatial dependence of y is suppressed in
equation (41).

Middleton’s theory applies to arbitrarily shaped objects. However, for the
results presented in Chapter IV, the theoretical object emittance distribution was

assumed to be a Gaussian with infinite spatial extent. An object with a Gaussian
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emittance distribution has a complex coherence factor given by [14],

2

RZ
t (A2 |exp | —m—ty (MY |, (43)

(Rz)’ (%z)

where Az and Ay are coordinate differences in the measurement plane given by

po (Az, Ay) =exp | —T

z1 — T9 and y; — ¥s, respectively. The parameter ) is the center wavelength of the
illuminating laser and z is the object to measurement plane distance. The quantities
R, and R, are decay parameters for the Gaussian object average reflectivity in
the z and y directions of the object plane, respectively. This section discussed the
determination of the phase covariance function required for the evaluation of equation
(40). The measurement plane phase covariance is also required to determine the

minimum variance optimal reconstruction matrix discussed in the next section.

8.8 Minimum Variance Reconstruction Matriz

Evaluation of the generalized error metric developed in Section 3.1 requires
expressions for the measurement plane phase covariance and the reconstruction ma-
trix, M;,. This section presents a specific form of M;, which provides the optimal

reconstruction matrix in a minimum variance sense.

The aperture averaged mean squared phase error can be minimized by proper
choice of the reconstruction matrix, M;,. This minimization is accomplished by
differentiating equation (40) with respect to the elements of My, setting the result
equal to zero, and solving for M;,. This analysis has been accomplished and leads

to an optimum reconstruction matrix given by [12, 22|,

M;, = > ZR;Q@;},LAM, (44)
k m

where the notation, Rj‘kl represents the 5% row and the k™ column element of the

inverse of the R matrix and ®:! represents the nt" row and m® column element
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of the inverse of the ® matrix. This choice of M;, is referred to as the minimum
variance reconstructor because it explicitly minimizes the aperture averaged variance
of the error. The aperture averaged mean squared phase error associated with M;,
is,

<52>min = <5(2)> -y zn: M;, Ajn. (45)

Y

The above equation can be written as [22],

() =) - ; Zn: zk: %: Ry Apm @ Ajn. (46)
Equation (46) represents the minimum aperture averaged mean squared phase error
obtained from the minimum variance solution to the phase reconstruction problem.
The reconstruction matrix, M;,, in equation (44) is used in equation (30) to
determine the optimal weighting coefficient, ¢;, leading to the 2D measurement plane
phase estimates. Besides the minimum variance solution to the measurement plane
phase reconstruction problem, a least squares formalism can be used to determine a
different reconstruction matrix. The least squares reconstruction matrix, M. ﬁf , can
also be used to evaluate the aperture averaged mean squared phase error in equation
(40) and estimate the measurement plane phase in equation (30). In Section 3.4,

the least squares reconstruction matrix is determined.

3.4 Reconstruction Matriz for New Least Squares Reconstructor

It is possible to define a least squares reconstructor which minimizes the sum
of the squared error between the true phase differences and the reconstructed phase
differences in the aperture without use of the statistical properties of the random
scattered field [4, 18, 23]. The error metric which is minimized is different than the
error metric discussed in Section 2.2. The reconstructors discussed in Section 2.2
minimize the difference between the true and reconstructed phases and not the true

and reconstructed phase differences as discussed in this section. This least squares
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implementation is useful in that an optimal reconstruction matrix is generated which
is used to estimate the theoretical aperture averaged mean squared phase error given
in equation (40). Good agreement between the theoretical errors developed in this
section and simulated results based on the conventional least squares reconstructor
discussed in Section 2.2 should, in general, not be expected due to the error met-
ric differences. To compare the theoretical results in this section to simulation, the
minimum variance formalism needs to be recast in terms of the phase estimation
paradigm given in equation (30) and the error metric used in this section. The
analysis for using the aperture averaged mean squared phase difference error in the
minimum variance wavefront reconstructor has been accomplished during the course
of this research. However, implementation of the minimum variance wavefront recon-
structor based on the aperture averaged mean squared phase difference error metric
was found to be too computer intensive for current use. The least squares imple-
mentation in this section provides the ability to generate a representative theoretical
aperture averaged mean squared phase error curve as a function of the sampling
parameter, 5. The theoretical aperture averaged mean squared phase error results
can be used to predict relative performance between the minimum variance and new

least squares methods.

Because least squares reconstructors do not require knowledge of statistics they
are computationally much simpler to implement than minimum variance techniques.
However, in the adaptive optics field, least squares reconstruction has been shown
to give lower performance than minimum variance reconstruction [23]. The least
squares phase reconstructor discussed below takes the general form given in equations
(30) through (33). However a different reconstruction matrix is used for the least
squares technique. The derivation of the least squares reconstruction matrix has been
previously accomplished. The critical elements of this derivation are repeated as it
applies to a SCIP phase reconstructor. To start, the error between the measured

phase differences and the phase differences arising from a given set of elementary
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function weights is given by,

A =A¢— HcbS, (47)

where A¢ is the vector of ordered phase difference measurements given in equation

(32), H is the Jacobian matrix, and cL% is a vector of weighting coefficients.

The elements, h%j, of the Jacobian matrix, H, which relate the change in the
output signal of the n* measurement plane sampling element in the g" direction of

sensitivity, Ad, (25), to the change in the 7% weighting coefficient, ¢; are given by,

0 Agg ()
0 Cj

hgzj = = [rj (Zn) — 7 (Zn + 84)] - (48)

In the above equation, the phase differences in the partial derivative are given by
equation (29) and the constituent phases are given by, ¢ (Z,) = 3 ¢;j (Zn). Equa-
tion (48) gives the sensitivity of the phase differences, Ag, (27), ’go a change in the
weighting coefficients, ¢;. The error metric which is minimized for this implementa-

tion of the least squares formalism is given by,
A]? = ATA, (49)

where ||A||? is the normed squared error of A and T represents the transpose oper-
ator. The least squares reconstructor finds c-° as a function of A¢ which minimizes

the sum of squares of the components of the error [19],
o = (HTH) ™ HT A4, (50)

By comparing equation (50) with equation (33), the least squares reconstruction

matrix for the least squares reconstructor is seen to be,

ML = (B"H)" H. (51)
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By substituting the above reconstruction matrix for that obtained by the minimum
variance derivation in equation (40), theoretical comparisons between the two phase
reconstruction methods can be made. Conclusions must be carefully drawn since the
error metric for the theoretical minimum variance and least squares formalisms are
different. The implementation and testing of the computer based theoretical and

simulated comparisons are discussed in the next section.

3.5 Minimum Variance Implementation and Testing

This section discusses the implementation of the minimum variance reconstruc-
tor. The assumptions required to tie the physical processes to computer simulation
are presented. The presentation follows the development of Chapter IT in that the
modeling process starts with the reflected object field. The reflected field is then
propagated to the measurement plane using equation (19) implemented with Fast
Fourier Transforms (FFT’s) and a 2D reference phase map is generated. The phase
at any measurement plane point lies in the range —7 < ¢ (&) < m. The reference
phase map has 27 discontinuities resulting from both branch cuts, as illustrated in
Figure 3, and phase wraps. The phase differences obtained from the reference map
lie in the range —2m < A¢, (Z,) < 27. The reference phase 27 discontinuities associ-
ated with branch cuts and phase wraps are unwrapped with a 2D phase unwrapping
utility [6]. The unwrapped phases are referred to as measurement plane true phases.
Phase differences are formed from the true phase in a manner consistent with the
SCIP measurement process in equations (1) - (10). The phase differences formed
from the unwrapped phase lie in the range —m < A¢, (Zp) < 7. The phase dif-
ferences are input to the minimum variance reconstructor and a 2D reconstructed
phase map is generated in the measurement plane. The phase maps are combined
with amplitude information from the measurement plane field and the respective
true and reconstructed measurement plane fields are determined. These fields are

propagated to the image plane using equation (19) implemented with FF'T’s where
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speckled instantaneous images are made for the true and reconstructed fields. In
using equation (19), the object plane coordinates are replaced by the measurement
plane coordinates and the measurement plane coordinates are replaced with the
image plane coordinates. Averaging of the image irradiance is used to reduce the

speckle noise and produce the incoherent image.

The modeling process starts in the object plane illustrated at the top right
corner of Figure 5. The reflected object field is modeled by circularly complex
Gaussian (CCQG) statistics. To represent the reflected field on a computer the field
must be spatially sampled on a 2D grid of points. For the SCIP technique, the
measurement plane aperture is assumed to be a square enclosing the measurement
plane sampling elements. The length of a side of the enclosing square aperture is
assumed to be D m. There are N by N measurement plane sampling elements evenly
spaced within the aperture. The performance of the minimum variance reconstructor
is compared to a diffraction limited coherent imaging system by computer simulation.
The clear aperture of the computer simulated coherent imaging system (reference
imaging system) is the same as the aperture enclosing the SCIP measurement plane
sampling elements. The diffraction limited resolution is the same for both the SCIP
imaging system and the diffraction limited imaging system. The spacing between the
points of the sampled reflected object field should be less than the diffraction limited
resolution of the reference imaging system to prevent granularity in the reconstructed
image. The center wavelength, A, of the illuminating beams is assumed to be 1.3 pm.
The length, D, of one side of the square measurement plane collecting aperture is 3
m. With an object to measurement plane distance, z, of 10% meters, the diffraction
limited resolution, 2%2’, of both imaging systems with square collecting apertures [20:
page 63] is seen to be 0.8667 m. The sample spacing in the object plane was 0.2167
m. The value of the reflected field on the 2D grid of points in the object plane
is determined by associating with every spatial point a random complex number.

For each 2D spatial coordinate, the real and imaginary part of the complex number
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Figure 5. Modeling process.

42




consist of independent random draws from a Gaussian distribution with zero mean
and equal variance. The variance of the real and imaginary parts of the reflected
object field is set to half the time averaged emittance at that particular spatial
location. The spatial field distribution generated in this fashion corresponds to one
realization of the random process. The digital representation of the reflected field

was centered in a 64 by 64 array otherwise filled with zeros.

Propagation of the reflected field from the object to the measurement plane is
accomplished by using the principle of Fraunhofer diffraction illustrated in equation
(19). An FFT was used to convert the reflected object field into the instantaneous
measurement plane field. The reference phase map is obtained by calculating the
phase at each sampled point of the measurement plane reference field in accordance

with equation (20). The sample spacing in the measurement plane, Az, is given

by, _
1 Az

Az, = ——— 52

Im =M Az, (52)

where M is the total number of FFT points in the z linear direction and Az, is the
sample spacing in the object plane. For an FFT using 64 points in a linear direction
and the preceding parameters, the grid of points in the measurement plane (fine grid)
has a sample spacing of 0.09375 m. The fine grid was used in the reconstruction
process to provide reference phase maps with which to compare the reconstructed
phases. The phase reconstructions illustrated in the results section are limited by
processing speed and are accomplished on a coarser grid in the measurement plane.
The sampling grid associated with the phase reconstruction process uses an 8 by
8 array of points (coarse grid) in the measurement plane of the imaging system.

Sample spacing on the coarse grid is 0.375 m in a linear direction.

The phase differences for the minimum variance reconstructor must be cal-
culated using the unwrapped reference phase (measurement plane true phases or
true phases for brevity) on the coarse grid to reflect limitations in the measure-

ment system. The reference phase differences lie in the range of +27 and must be
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unwrapped to the range of +7 for consistency with the SCIP detection process. Mea-
surement plane reference phase values whose magnitude exceeds 7 are wrapped by
the detection process into their principal ranges (+7). Since the reference phases are
restricted to this principal range, the phase differences determined from the reference
field phase can not have magnitudes exceeding 27. The phase differences obtained
from the true phase map are equivalent to those that are obtained from the SCIP

technique and can not have magnitudes exceeding 7.

The reference phase differences are also calculated on the fine grid and used
in conjunction with the G & R least squares phase unwrapper [6] to provide a high
resolution true phase map in the measurement plane. Both the reference phase map
and the true phase map are used to compare the results from the minimum variance
phase estimation process to the new least squares and a conventional least squares
wavefront reconstructors. The G & R least squares phase unwrapper is based on
solving Poisson’s equation in two dimensions with Neumann boundary conditions.
The mathematical development is identical to the path integral based iterative least
squares phase reconstructors discussed in Chapter II. Therefore, the phase unwrap-
per can be used as a wavefront reconstructor on the coarse grid of measurement plane
sample points allowing for a direct simulation comparison between the conventional

least squares and minimum variance formalisms.

By using the weighted elementary functions in equation (31) which exist ev-
erywhere in the aperture in the minimum variance formalism and in a new implemen-
tation of the least squares method, the values of the phase at any arbitrary position
in the aperture of the measurement plane can be interpolated. Conventional least
squares approaches discussed in Section 2.2 do not provide this feature but rather
can only estimate the phase on a coarse measurement grid of points. The values of
the measurement plane phase are determined at every point on the fine grid allow-
ing for a comparison between the reconstructed phase from the minimum variance

formalism, the true phase, and the new implementation of the least squares phase.
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The fine phase grid consists of an array of 33 by 33 points. The point phases are
combined with point amplitudes from the true field to form the measurement plane
field. The effects of the measurement plane aperture are included by embedding the
field within the 33 by 33 point clear aperture of the imaging system in a 64 by 64
matrix of zeros. Propagation from the measurement plane to the image plane is
accomplished by a 2D FFT. The instantaneous image irradiance is determined by

taking the pointwise magnitude squared of the resulting image field.

The resulting instantaneous image irradiance is often disappointing since it
rarely resembles the time averaged reflectivity profile of the object. This is because of
the presence of speckle in the instantaneous image irradiance. Image plane averaging
is used to approximate the image irradiance given by equation (28) and reduce the
amount of speckle in the image. One hundred statistically independent realizations
of the instantaneous image irradiance, when point wise averaged together, are found
to produce similar images as those produced from a simulated noise free diffraction

limited coherent imaging system.

To test the minimum variance reconstructor, the throughput and non-statistical
aspects of the implementation were checked, the essential equations in the determi-
nation of the optimal reconstruction matrix, M;,, were tested, and a reconstruction
of a simple target was performed. These steps were performed to gain confidence in

the reconstructor prior to attempting more complicated extended objects.

To check the throughput of the minimum variance reconstructor, a measure-
ment plane phase map corresponding to a deterministic object was reconstructed.
This was accomplished by choosing a test case which produced a deterministic phase
correlation function. The deterministic phase correlation function was used in the
minimum variance wavefront reconstructor. By choosing an off-axis point source for
an object model, the expected phase map in the measurement plane is deterministic,
and is given by a tilted plane. Figure 6 shows a comparison of the measurement plane

phase for the (a) true phase and (b) reconstructed phase for an off-axis point source.
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(a) True Phase (off-axis point source)

Phase (rad)

2 2 -1
y — axis (m) X — axis (m)
(b) Reconstructed Phase

y — axis (m) X — axis (m)

Figure 6. (a) True phase and (b) reconstructed phase for deterministic off-axis point
source object.

The point source was displaced in the z direction by 0.2167 m. The reconstructed
phase appears similar to the true phase. A grid of 8 by 8 sample points were used
in an equally spaced 3 m by 3 m measurement plane collecting aperture. The center

locations of the elementary functions are visible in the reconstructed phase.

To better observe the similarity between the true and reconstructed phase maps
in Figure 6, a plot of the phase error squared between the true and reconstructed
phases is in order. Figure 7 shows a point by point plot of the squared difference
between the true and reconstructed phase maps. The errors along the edges are from
the reduced number of neighboring sample points available to make the estimate as
compared to sample points in the interior of the clear aperture. Apart from the

edges, good agreement between the true and reconstructed phase maps is evident.
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Figure 7. Off-axis point source phase error squared.

The reasonable match between the true and reconstructed phases indicates that the

minimum variance simulation works for simple deterministic objects.

The phase covariance determination in the reconstructor was tested by inde-
pendently implementing all the governing equations of the minimum variance re-
constructor. Mathematica [24] and MathCad [25] were used to check the governing
equations of the minimum variance wavefront reconstructor. The equations for,
®pnm, Rjk, and Aj, were each independently checked and shown to be accurate to
the fourth significant figure. The precision requirement was based on processing time
limitations in the prototype version of the reconstructor. A test case was generated
to demonstrate the functionality of the reconstructor and test the image formation

process.

A test case which demonstrates the ability of a reconstructor to reproduce

ridge discontinuities is a phase map arising from a double point source object. The
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phase map from a double point source (DPS) object is illustrated in Figure 8 (a).
The separation of the object point sources was 1.733 prad. The true phase map
shows sharp ridge discontinuities. Figure 8 (b) shows the reconstructed phase for
one measurement frame. There were 8 measurement plane samples used in a linear
direction (64 total samples). As expected, the reconstructed phase map is similar to

a low pass version of the true phase depicted in (a).

To demonstrate that the image formation process was correctly implemented,
the true and reference phase maps in Figure 8 were combined with the known field
amplitudes and processed to produce the instantaneous image. Figure 9 (a) shows
the true image for one frame of data. The true image was obtained by Fourier
transforming the measurement plane true field, multiplying the result by its com-
plex conjugate, and normalizing by dividing by the on-axis irradiance. Figure 9
(b) shows the instantaneous reconstructed image. To obtain the single realization
reconstructed image, the identical procedure as for the true image was used except

the reconstructed phase was substituted for the true phase.

The prominent features of the double point source are recognizable in the
reconstruction. The additional structure in the reconstructed image is due to the
effect of the aperture and the imperfect reproduction of the step discontinuities.
Decreasing the sample spacing, L, and Ly, in the measurement plane would improve

the appearance of the reconstructed image.

This section has illustrated that the reconstructor is implemented in accordance
with the governing equations and that it is sensitive to step discontinuities in the
measurement plane phase function. The production of a double point source image
indicates that throughput and scaling issues have been satisfactorily addressed. The
next section discusses how additive noise is included in both the governing equations

and in the simulation.
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(a) True Phase (double point source)
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Figure 8. (a) True phase and (b) reconstructed phase for double point source object
with 1.7333 prad separation.
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(a) True Image (double point source)
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Figure 9. Double point source (a) true image and (b) reconstructed image for point
source separation of 1.7333 prads.
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3.6 Additive Noise

This section discusses how noise effects are incorporated in both the theory
and computer simulation. The detection elements in the measurement plane are
assumed point detectors such as photo diodes. The noise is assumed to be zero
mean additive white Gaussian noise such as is seen in photon noise limited detectors.
The governing equations of the minimum variance wavefront reconstructor depend
on the covariance of the phase. Since the noise is assumed additive, the correlation
of the noise is required to assess the impact of the noise on the minimum variance
reconstruction process. Simultaneous measurements of orthogonal slopes from the
same wavefront are uncorrelated. Mathematically these conditions are expressed as
[12],

(@) n (&) = bunord (En — Tn) (53)

where (n (%) n (Z')), represents the correlation of the noise, knm, is a Kronecker delta
function arising from the correlation properties from separate wavefronts, o2, is the
variance of the noise at the n® sample point in the measurement plane, 6 (-) repre-
sents a delta function and %, and Z,, are discrete spatial locations in the measurement

plane.

The noise is assumed to be uncorrelated with the wavefront phase. These cor-
relation properties indicate that the only affected term in the governing equations
of the minimum variance wavefront reconstructor is that for the correlation of the
phase differences, ®,,,, in equation (39). To incorporate the effects of additive white
Gaussian noise in the theoretical development of the minimum variance reconstruc-
tor, the noise variance in equation (53), o2, is added to all the diagonal elements
of the phase difference correlation matrix, ®,,,. The noise does not affect the other
terms in equation (39). The noise variance for all the separate diagonal matrix

elements of ®,,, are assumed identical.
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To include the effects of additive white Gaussian noise in the computer simu-
lations, a separate Gaussian random number with zero mean and variance of o, is
added to each of the phase differences obtained from the SCIP measurement process.
Random Gaussian noise draws are added to both z and y phase differences at each
sample point in the measurement plane leading to 2V 2 random noise contributions

for each data frame.

This chapter has developed the theoretical foundation for the minimum vari-
ance wavefront reconstructor. A generalized error metric was developed allowing
for the comparison of the minimum variance and least squares formalisms. Evalu-
ation of the error metric required an expression for the phase covariance, a specific
choice for a reconstruction matrix, M;,, and an expression for the noise covariance,
(n(Z)n (#')). An expression for the phase covariance was developed as well as re-
construction matrices for both the minimum variance and least squares wavefront
reconstruction processes. The minimum variance reconstructor was implemented
and tested on a deterministic test case. An off-axis point source reconstruction
showed that the reconstructor worked for the case of a simple deterministic object
with no measurement noise. Separate implementations of the governing equations
from the minimum variance wavefront reconstructor showed that the statistically
based algorithms in the reconstructor matched the theoretical expressions developed
in this chapter. The reconstructed image of a double point source object was shown
to compare favorably to a computer simulated image that would have been obtained
from the DPS object using a 3 m by 3 m filled (square) collecting aperture. Finally,
the incorporation of additive white Gaussian noise in theory and in simulation was

presented.
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IV. Results

This section demonstrates the performance of the minimum variance recon-
structor discussed in Chapters I through III. Throughout this chapter, it is impor-
tant to distinguish between two types of phase maps in the Fraunhofer plane of the
object. The reference phase map is the actual phase in the far field of the object.
For the reference phase map, the phases are wrapped into their principal range of
—7 < ¢ (&) < 7 where z is a coordinate in the measurement plane. Phase differ-
ences given by equation (6) calculated from the reference phase lie in the range,
—21 < Ad, (£) < 2, where g is the direction of the measurement plane shear (z
or ). The other measurement plane phase map considered in this chapter is the
unwrapped reference phase map. The unwrapped reference phase map is referred to
as the true phase map. For the true phase map, the phase differences from equation

(6) are wrapped into the range —7 < Ad, (&) < 7 by equation (10).

In demonstrating the performance of the minimum variance wavefront recon-
structor, it is reasonable to have prior knowledge about gross object features such
as the approximate size and shape of the object. It is not reasonable to expect to
have detailed information about the surface features and average reflectivity profile
of the object. For these reasons, a Gaussian envelope function with infinite extent
was used to model the object average reflectivity in the theoretical development of
the minimum variance wavefront reconstructor. In this analysis, a Gaussian object
is assumed to be illuminated by a plane wave. For all of the phase and image recon-
structions presented in Chapter IV, the theoretical object is assumed to produce a
spatially Gaussian average reflectivity profile with infinite spatial extent. The effect
of a mismatch between the theoretical (Gaussian object) and simulated (truncated
Gaussian object) on the aperture averaged mean squared phase error is characterized
in Section 4.4. For the theoretical development of the minimum variance wavefront

reconstructor, the average reflectivity at any spatial point on the object was assumed
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to be given by,

1 (z0,90) = 1(0,0) exp <»w%)—2> exp (—n%> . (54)

The coordinates, z, and y,, define an observation point in the object plane. The pa-
rameters R, and R, where chosen so that the average reflectivity along the outer edge
of the angular subtense of the object assumed the value of e~ ! of the on axis average
reflectivity, I (0,0). The Gaussian average reflectivity profile was used throughout
this chapter to estimate the measurement plane phase covariances and calculate the

optimal reconstruction matrix, M;y,.

In the measurement plane, two types of phase maps were used in the compari-
son of the minimum variance wavefront reconstructor to both the new least squares
and conventional (G & R) least squares wavefront reconstructors. The first type of
phase map was referred to as the reference phase map. The reference phase was deter-
mined by evaluating equation (20) at every point on the fine grid in the measurement
plane. The reference phase differences lie in the range of —27 < Ad, (%) < 27. The
reference phase has both 27 discontinuites associated with branch cuts and phase
wraps and so the simulated aperture averaged mean squared phase error will be too
high. The phase wraps should be removed prior to calculating the simulated aperture
averaged mean squared phase error. The second type of phase map used to compare
the minimum variance wavefront reconstructor to both the new least squares and the
G & R least squares wavefront reconstructors was obtained by unwrapping the ref-
erence phase map with a 2D phase unwrapping technique [6]. The unwrapped phase
map (true phase) provides phase differences consistent with the SCIP measurement
process. Applying the 2D phase unwrapping technique to the reference phase map
unwraps the 27 ridge discontinuities resulting from both the phase wraps and the
branch cuts. The aperture averaged mean squared phase error determined from the
true phase will be too low since the deformations in the 2D measurement plane phase

map due to the presence of the 27 discontinuities associated with branch cuts has
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been removed in the unwrapped phase. This means that the simulated aperture
averaged mean squared error will not equal the theoretical aperture averaged mean
squared phase error. However, the theoretical performance of the minimum variance
wavefront reconstructor can be compared to the theoretical performance of the new
least squares reconstructor. The simulated aperture averaged mean squared phase
error of the minimum variance wavefront reconstructor can be compared with both
the new and conventional least squares reconstructors for both the reference and
true phase maps. Section 4.1 demonstrates the performance of the reconstructor for
highly polished objects. These objects provide the best reconstructions since spatial

phase information is not randomized upon reflection.

Section 4.2 shows results for a simple rough object which can be modeled by
a random double point source. This type of object is useful in determining the

resolution of the optical system.

Section 4.3 provides results for random extended objects for optimal recon-
struction conditions. Optimal conditions refer to no measurement noise and no
differences between the theoretical and simulated object model. A comparison to
the least squares class of reconstructors is also accomplished in this section. Sev-
eral types of comparisons are made between the least squares and minimum variance
methods. The theoretical aperture averaged mean squared phase error is determined
for the minimum variance and new least squares reconstructor discussed in Section
3.4. A comparison of the simulated aperture averaged mean squared phase error
between the minimum variance and new least squares methods is made for the two
types of phase difference inputs to the wavefront reconstructors (reference phases
and true phases). A comparison of the simulated aperture averaged mean squared
phase error is made between the minimum variance reconstructor and a conventional
least squares reconstructor for both the reference and true measurement plane phase
maps. In comparing the performance of the minimum variance reconstructor to a

conventional least squares reconstructor, the G & R version of the conventional least
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squares reconstructor discussed in Section 2.2 was used. The G & R conventional
least squares reconstructor minimizes the same error metric as that for the minimum
variance reconstructor. The simulated aperture averaged mean squared phase error
for the minimum variance reconstructor is compared to the G & R reconstructor on
identical sampling grids. The G & R wavefront reconstructor is implemented on an
8 x 8 sampling grid to coincide with the 8 x 8 sampling grid used in the minimum
variance reconstruction process. For the minimum variance wavefront reconstructor,
only the values of the squared error at the spatial locations of the sampling grid were

used in determining the average mean squared phase error.

Section 4.4 evaluates the performance of the minimum variance reconstructor
under sub-optimal conditions. Mismatches between the theoretical object average
reflectivity and the simulated average reflectivity are characterized. Three types of
average reflectivity mismatches are characterized. The first average reflectivity mis-
match between the theory and simulation looks at differences between a Gaussian
object average reflectivity with infinite extent (as modeled in the theoretical devel-
opment of the minimum variance wavefront reconstructor) and a truncated Gaussian
(to reflect the finite extent of the object in simulation). The second average reflec-
tivity mismatch between the minimum variance theory and simulation investigates
the effect of differences between the shape and magnitude of the average reflectivity
profiles. For the second average reflectivity mismatch case, the average reflectivity
profile in the theory is assumed to be spatially Gaussian with infinite extent. The
third average reflectivity mismatch investigates differences between the theoretical
object size and the simulated object size. The aperture averaged mean squared phase
error is determined as a function of the degree of size mismatch. Also included in
this section are the effects of additive white Gaussian phase difference measurement

noise on the performance of the minimum variance wavefront reconstructor.

In carrying out the computer simulations, the following parameters were used.

The measurement plane aperture was a square with a side length of 3 m. There
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were two sampling grids used in the measurement plane, a fine grid and a coarse
grid. The fine sampling grid is shown in Figure 2. The number of sample points
on the fine grid in both linear directions are referred to as N, and N, and there
were 33 X 33 evenly spaced points within the measurement plane. The sample
spacing L, and L, of the fine grid was 0.09375 m in both linear directions. The fine
grid was used to determine the high resolution phase maps with which to compare
the reconstructed phase maps. Figure 2 can also be used for the coarse grid by
substituting N = N, = N, and L = L, = L. For the coarse grid, the number of
measurement plane samples, N, in the reconstruction process was 8 in both linear
directions. This lead to a coarse sampling grid of 8 x 8 evenly spaced samples in the
measurement plane aperture. The sample spacings, L, on the coarse grid was 0.375
m in both the z and y directions. The reconstructed phase maps were generated on
the points of the coarse grid. The elementary functions in equation (31) were used
to interpolate the remaining reconstructed phase estimates on the 33 by 33 fine grid.
The interpolation allowed for a direct comparison between the high resolution phase
maps and the reconstructed phase maps. The illumination center wavelength was
A = 1.3 pym and the measurement plane to object plane distance was 10 m. The
shear between the measurement plane fields (s, and s,) were both 0.46875 m. The
distance from the illumination plane to the object plane was assumed to be 105 m
and so the separation of the illuminating beams was also assumed to be 0.46875 m.
The radius of the elementary functions, R was set to 0.75 L. This choice of radius
was found to provide smooth reconstructions. Sample spacing in the object plane
was 0.21667 m in both linear directions. The object dimensions were allowed to
vary. These parameters were used in all of the results discussed in this chapter. The
following section presents the results for reconstructions of objects which are smooth

on the scale of an optical wavelength.
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4.1 Reconstructions of Smooth Objects

Before evaluating the performance of the minimum variance wavefront recon-
structor for conditions when the object is optically rough (diffuse scatterer), a perfor-
mance assessment was made for objects which are smooth on the scale of an optical
wavelength (highly polished objects). The reconstructor performance is expected to
be better than the diffuse scattering case when the object surface features can be
considered optically smooth. This stems from the preservation of the spatial phase
information in the polished objects reflected field. In random objects, the reflected
phase is randomized, leading to a corrupted reflected phase map. The reflected field
from a highly polished object can essentially be considered a special case of the dif-
fuse scattering problem. Namely, the reflected field from a polished object can be
considered a noise free reflection where the noise is the randomization of the field
itself. By assuming negligible amplitude effects (low absorbing material), the ran-
domization effects result predominantly from the phase. The reflected phase from
a highly polished object can be considered as the reflection of a random scatterer
where the amount of corruption of the scattered phase map is considered negligible.
Two types of objects are evaluated in this section. The first is an object with a 2D
spatial irradiance distribution similar to a doughnut. The second object has three
bars parallel to the horizontal axis in the object plane. For both objects, the re-
construction matrix, Mjy,, corresponding to the Gaussian average reflectivity profile

given by equation (54) was used.

The first polished object under consideration had a simulated Gaussian average
reflectivity profile given by equation (54) with the additional condition that a central
circular core with a smaller radius than that of the object support is set to zero. A
top down 2D view of the average reflectivity in the object plane is shown in Figure
10. The average reflectivity distribution from the object resembles a doughnut with

an inner radial average reflectivity that is higher than along the outer object support.
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Reflected Object Brightness Distribution (1.733 micro—radian)
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Figure 10. Average reflectivity distribution for 1.7333 urad deterministic doughnut
object.

The reflected field from a highly polished object can be modeled as being en-
tirely real. This can be seen from the following illustration. The electromagnetic
waves illuminating the object are plane waves. Since in the minimum variance for-
malism the average value of the phase is negligible, the mean value of the illuminating
wavefront phase can be set to zero. The reflected wavefront preserves the phase infor-
mation of the illuminating wavefront for highly polished objects and so the reflected
field is entirely real. Spatial features were added to the object by zeroing selected

portions of the reflected field.

The reflected field was Fourier transformed and the phase was determined
from the real and imaginary parts of the measurement plane field. The resulting
measurement plane computer simulated phase map had phase differences in the

range +7 requiring no phase unwrapping.
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(a) True Phase (doughnut object)
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Figure 11. Measurement plane phase maps of (a) true phase and (b) reconstructed
phase for 1.733 prad deterministic doughnut object.

Figure 11 shows the measurement plane true phase (a) and reconstructed phase
(b) corresponding to one frame from the doughnut object. The reconstructed phase
was obtained by using the phase differences from the true phase as inputs to the min-
imum variance wavefront reconstructor. The phase differences correspond to those
obtained by the SCIP technique given in equation (10). The simulated aperture
averaged squared phase error was determined by pointwise subtracting the estimated
phase from the true phase, pointwise squaring the result, integrating across the mea-
surement plane aperture, and normalizing by dividing by the aperture area. The
simulated aperture averaged squared phase error determined in this fashion was
1.2763 radians squared. The simulated aperture averaged squared phase error was

41 % of the aperture averaged input phase variance given by the last term in equa-
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(a) True Image (doughnut object)
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Figure 12. Plots of (a) true image and (b) reconstructed image for 1.733 prad
deterministic doughnut object.

tion (40). The measurement plane sampling was 8 by 8 samples across a 3 m square

aperture.

The instantaneous true image which would be obtained from a 3 by 3 m square
filled aperture was obtained by Fourier transforming the measurement plane field.
The measurement plane true field was determined using the true phase shown in
Figure 11 along with the true field amplitudes. The measurement plane reconstructed
field was estimated using the reconstructed phases shown in Figure 11 and the true
field amplitudes. Figure 12 shows the resulting image for the true image (a) and
reconstructed image (b). Only one realization (frame) of measurement plane phase
data was used to reconstruct the images since this was a deterministic test case. The
central hole in the reconstructed doughnut object is clearly visible. The true and

reconstructed images look similar.
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Reflected Object Brightness Distribution (1.733 micro-radians)
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Figure 13. Average reflectivity for 1.733 urad deterministic tri-bar object.

In Figure 13, a simulated object average reflectivity with three horizontal
stripes is illustrated. The object has a reflected Gaussian average reflectivity distri-
bution given by equation (54). In addition to this average reflectivity profile two

parallel stripes are set to zero equally spaced from the horizontal axis in the object

plane.

The reconstruction process used for the doughnut object was repeated for the
tri-bar object. The measurement plane phase maps are illustrated in Figure 14.
Figure 14 (a) shows the true phase in the measurement plane and (b) shows the
reconstructed phase. Identical sampling was used as with the doughnut object.
The aperture averaged squared phase error was 0.8326 radians squared true and
reconstructed phases corresponding to the tri-bar object. This aperture averaged

squared phase error was 27 % of the aperture averaged input phase variance.
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(a) True Phase (tri-bar object)
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Figure 14. Measurement plane phase maps of (a) true phase and (b) reconstructed
phase for 1.733 prad deterministic tri-bar object.

Figure 15 shows the true (a) and reconstructed (b) images corresponding to
the single frame phase maps depicted in Figure 14. Good agreement is again seen
between the actual reflected object average reflectivity, the true image, and the re-
constructed image. An important point to mention is that in constructing the true
image, the entire 3 m by 3 m aperture (33 by 33 points) was used to determine the re-
sulting image. For the minimum variance wavefront reconstructor, the reconstructed

image only used 8 by 8 sample points in the reconstruction process.

This section has demonstrated that the minimum variance reconstructor works
for the special case of an optically smooth object. Images of an object with an av-
erage reflectivity profile that looks like a doughnut and a horizontal tri-bar were
successfully reconstructed. The next section looks at the performance of the mini-

mum variance reconstructor for a simple diffuse scatterer.
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(a) True Image (tri-bar object)
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Figure 15. Image plane maps of (a) true image and (b) reconstructed image for
1.733 urad deterministic tri-bar object.

4.2 Simple Diffuse Reflector

This section demonstrates the performance of the minimum variance recon-
structor for a geometrically simple diffuse scattering object. A double point source
is used to illustrate the resolution of the minimum variance reconstructor. The
term point source denotes an object with physical dimensions much smaller than
the resolution of the optical system. Computationally, a point source corresponds
to objects with physical dimensions smaller than the sample spacing in the object
plane. Figure 16 shows the configuration of the point sources in the object plane.
The optical power at each point source was the same. The field at each source
point was represented by a complex number whose real and imaginary parts were

independent Gaussian variables with zero mean and equal variance. For consistency
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Reflected Object Brightness Distribution (0.8667 micro—radian)
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Figure 16. Average reflectivity distribution for a random double point source object
with 0.8667 prad separation.

with circularly complex Gaussian statistics, the variance was set to half the average

reflectivity at a given source point [13].

As before, the measurement plane reference phase is obtained by Fourier trans-
forming the reflected object field. The reference phase is then determined by cal-
culating the phase according to equation (20) at each measurement plane spatial
location. The true phase is determined by unwrapping the reference phase with a 2D
phase unwrapping utility [6]. Figure 17 shows the measurement plane (a) true phase
and (b) the reconstructed phase corresponding to the random double point source
object depicted in Figure 16. The reconstructed phase appears to be a smoothed

version of the true phase.

The instantaneous image was obtained by Fourier transforming the measure-

ment plane field and pointwise multiplying by the complex conjugate of the resulting
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(a) True Phase (random double point source)
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Figure 17. Measurement plane phase maps of (a) true phase and (b) reconstructed
phase for 0.8667 urad separation random double point source object.

image field. Figure 18 shows the resulting (a) true and (b) reconstructed images for
the single frame phases illustrated in Figure 17. The reconstructed image exhibits
the general features of the true image of the random double point source. The re-
constructed phase and image matched the true phase and image particularly well for

this random draw from the space of possible phase and image realizations.

The average image irradiance was formed by pointwise averaging the instanta-
neous image irradiance. Figure 19 shows the (a) true and (b) reconstructed images
for 100 independent image frame averages of the random double point source ob-
ject. The reconstructed image shows the separation between the two point sources.
This separation is equal to the diffraction limited resolution of the imaging system.

The measurement plane sampling was 8 samples in a given linear direction (64 total
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(a) True Image (random double point source)
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Figure 18. (a) True image and (b) reconstructed image for random double point
source object with 0.8667 urad separation. The measurement plane
sampling density was 8 by 8 evenly spaced samples in a 3 m by 3 m
square collecting aperture. The number of independent image frames
used to average was 1.

samples spanning a 3 m by 3 m aperture). The measurement plane sample spacing

was 0.375 m in both the z and y directions.

To better see the diffraction limited performance shown in Figure 19, an overlay
of a slice along the z axis of the true and reconstructed images is helpful. Figure

90 shows that the peak-to-peak separation of both the reconstructed image and the

true image is identical. The peak-to-peak separation was calculated as 0.85 m. The
full width at half maximum (FWHM) measurement of a single lobe of the true image
irradiance was 0.42 m. The FWHM measurement of the reconstructed image was

0.62 m.
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True Image (double random point source)
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Figure 19. (a) True image and (b) reconstructed image for random double point
source object with 0.8667 urad separation. The measurement plane
sampling density was 8 by 8 evenly spaced samples in a 3 m by 3 m
square collecting aperture. The number of independent image frames

used to average were 100.

The random double point source object was used to bridge the gap between the
specular reflector class of objects and the extended diffuse reflector class discussed in
the next section. Additionally, the random double point source object was useful in
illustrating the diffraction limited resolution of the minimum variance reconstructor.

The next section evaluates the performance of the minimum variance reconstructor

for extended diffuse reflectors.

4.8 FExtended Diffuse Reflectors

This section illustrates the performance of the minimum variance wavefront

reconstructor when imaging optically rough extended objects. The theory developed
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Figure 20. Overlay of true image slice and reconstructed image slice for random
double point source object with 0.8667 urad separation. The number of
independent image frames used to average were 100.

in Chapter III was applied to a simulated object with a Gaussian average reflectivity
profile described by equation (54). The reflected field in the immediate vicinity
of the object was modeled by circularly complex Gaussian statistics where the real
and imaginary parts of the field are zero mean Gaussian random variates with equal
variances [9]. To generate the proper far field statistics, the variance was set to half
the value of the average reflectivity at each point in the object [10]. The average
reflectivity at any given point within the support of the object was given by equation

(54). The average reflectivity was set to zero outside the object support.

The aperture plane of the imaging system was located in the far field of the
object. Discrete sampling detectors were simulated by a sampling grid illustrated
in Figure 2. The quantities L, and L, are the fine grid sample spacings in the z

and y directions. The parameters N, and N, represent the number of sampling
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Figure 21. True (a) and reconstructed image (b) for extended random object with
Gaussian average reflectivity profile

elements in the z or y directions so that the total spatial extent of the sample array
is (N, — 1) L, by (N, — 1) L.

The optimum reconstruction matrix using the minimum variance formalism
was calculated for a Gaussian target subtending 0.4333 prad. The angular subtense
of 0.4333 urad indicates the e~! width of the Gaussian average reflectivity profile
given in equation (54). Figure 21 shows a comparison of the true image with that
of the average reconstructed image. The measurement plane field was obtained by
Fourier transforming the reflected object field.

The true image was formed by Fourier transforming the measurement plane
field, computing the associated image irradiance, and averaging the result. One
hundred realizations of the random object were used to obtain the results presented.

As can be seen, good agreement between the reconstructed and true image is evident.
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Figure 22. Minimum theoretical aperture averaged mean squared phase error for
minimum variance (solid line) and least squares (long dashes) for-

malisms. Also included is the aperture averaged input phase variance

(short dashes). Gaussian average reflectivity profiles with infinite spa-
tial extent were used in determining the theoretical aperture averaged

mean squared phase error for all values of (3.

The aperture averaged mean squared phase error given by equation (40) for this
case was 0.0522 radians squared. The aperture averaged mean squared phase error
was 3.1 % of the aperture averaged input phase variance.

Figure 22 shows a comparison of (¢?) from equation (40) for the least squares
wavefront reconstructor from Section 3.4 and the minimum variance wavefront recon-
structor as a function of the sampling parameter, § = \/LZZ' The sampling parameter

is a function of measurement plane sample spacing, L, and the coherence area of
the object, A,. Note that the dimensionless parameter 3 does not factor out of
the analysis of this phase reconstruction technique. Rather, the choice of § as the

parameter used to study sampling effects on the reconstruction reflects the physical
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insight that errors due to sampling are closely related to the coherence area of the
field in the measurement plane. The dependency of 3 on the object coherence area
makes the sampling parameter object dependent. The general expression for the

coherence area, A, is given by [13: page 210],

(e ole o}

dc= [ [ no(aa, ay)|draddy, (55)

—00 —00
where p, (Az, Ay) is the complex coherence factor. By substituting the complex
coherence factor corresponding to the Gaussian object average reflectivity profile
given by equation (43), the coherence area determined from equation (65) is seen

to be,

A, = (l) (* 2)2 (56)

2/ R;R,’
where ) is the center wavelength of the illuminator, and 2 is the object to receiver
plane distance. The parameters R, and R, can be related to the object dimensions,

D, and Dy, by,

(57)

The dimensions of the object were changed to vary the coherence area in the
measurement plane. An 8 by 8 measurement plane sampling grid was used and kept
constant for all measurements. The theoretical object average reflectivity used to
estimate the optimal reconstruction matrix, M;,, was a Gaussian with infinite spatial
extent. The e~! width of the theoretical object average reflectivity was set to 0.4333
m, 0.8667 m, 1.3000 m, 1.7333 m and 2.1667 m for the corresponding values of .
As can be seen in Figure 22 the minimum expected error for the minimum variance
formalism is much less than that expected for the least squares methods. The bump

in the theoretical least squares curve (long dashes) in Figure 22 is suspicious. One
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possible reason for the bump in the theoretical least squares results is precision
limitations in the determination of the measurement plane phase covariances. These
precision errors become more significant as § becomes smaller. As can be seen
by equation (44), the minimum variance wavefront reconstructor compensates for
some of the ®,,, precision error by including @} in the estimation of the optimal
reconstruction matrix, M;,. The current precision level in the determination of the
measurement plane phase covariances was set at the fourth decimal place based on

processing time limitations.

Note that, as the value of 3 becomes smaller, the phase difference correlation
matrix, ®,,, becomes ill-conditioned, and hence the inverse of ®,, can become
unstable. This results from the orthogonal phase differences converging towards
constant values as the object size gets smaller. In the limit of a point source, the
phase differences in the measurement plane are constant and the y phase differences
are also constant. In this limiting case, the ®,,, matrix is not invertible. For the

0.4333 prad object, the condition number of the ®,,, matrix was high (1.577 x103).

Computer simulation was used to determine the simulated (e?) as a function
of 3. Both the reference phase map and the true phase map were used in the sim-
ulations. The reference phase map was used to illustrate the performance of the
minimum variance wavefront reconstructor when the measurement plane phase map
contained ridge discontinuities of magnitude 27 resulting from branch cuts and phase
wraps. These ridge discontinuities are present in the actual measurement plane phase
function and the associated phase differences are unwrapped by the SCIP detection
process. The reference field characterization is used to demonstrate the performance
of the minimum variance wavefront reconstructor assuming that phase differences
spanning the range of —27 < A¢, (Z) < 27 are available in the detection process.
The true phase map was used to demonstrate the performance of the minimum vari-
ance wavefront reconstructor for phase difference measurements corresponding to

the SCIP detection process. Unlike the branch cuts, which result from zeros in the
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measurement plane field, the phase wraps result from the complex exponential rep-
resentation of the measurement plane 2D phase function and should be unwrapped
prior to calculating the aperture averaged mean squared phase error. The aperture
averaged mean squared phase error determined from the reference phase will be too
high because of the presence of the phase wraps in the 2D measurement plane phase
function. However, applying a 2D phase unwrapping technique to the reference
phase unwraps the 27 discontinuities from both the phase wraps and the branch
cuts. The simulated aperture averaged mean squared phase error calculated from
the true phase will be too low since the 27 phase discontinuities associated with
branch cuts have been unwrapped in the true phase map. The theoretical object
average reflectivity used to determine M, was a Gaussian with infinite extent. The
simulated object average reflectivity was matched to the theoretical object average

reflectivity.

In the first determination of (€?) as a function of 3, the phase differences used
as inputs in the simulation were calculated from the reference phase map. The refer-
ence and reconstructed phase maps were pointwise subtracted from one another and
squared. This process resulted in an array of 33 by 33 squared instantaneous phase
error terms denoted €%, The simulated aperture averaged mean squared phase error,
(€?);, was obtained by repeating the process for determining €2, for 100 indepen-
dent measurement plane phase frames, pointwise averaging the squared phase error
terms, integrating across the aperture, and normalizing by dividing by the aperture
area. Figure 23 shows the comparison between the theoretical and simulated results
for the minimum aperture averaged mean squared phase error as a function of the

sampling parameter, J3.

The simulated aperture averaged mean squared phase error is higher than the
theoretical result for the minimum variance reconstructor because precision limita-
tions in the phase covariances and the presence of phase wraps in the simulated

reference phases. The phase wraps cause artificial ridge discontinuities in the mea-
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Aperture averaged mean squared phase error for theoretical (lower solid
line) and simulated (long dashes) minimum variance results. Aperture
averaged mean squared phase error for theoretical (dash dot) and sim-
ulated (upper solid line) results for the new least squares reconstructor.
The aperture averaged input phase variance is also shown (dotted line).
The reference phase map was used to provide the phase differences.
Gaussian average reflectivity profiles with infinite spatial extent were
used in both the theoretical and simulated determination of the aper-
ture averaged mean squared phase error. The horizontal axis is the sam-
pling parameter, 3. The measurement plane sampling density was 8 by
8 evenly spaced samples in a 3 m by 3 m square collecting aperture. For
the simulation results, the number of independent measurement plane
frames used to determine (€?), was 100.
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surement plane phase. Unlike branch cuts which result from isolated zeros in the
measurement plane field, the phase wraps should be unwrapped prior to calculating
the aperture averaged mean squared phase error. The presence of the phase wraps
produce discontinuities in the measurement plane phase function which cause the
simulated aperture averaged mean squared phase error based on the reference phase

map to be higher than the theoretical result.

Figure 24 shows a comparison of the theoretical and simulated aperture aver-
aged mean squared phase error of the minimum variance reconstructor and the least
squares reconstructor of Section 3.4. The phase differences were calculated from the
true phase map and are consistent with the SCIP measurement process. The true
phases are obtained from the reference phases by applying a 2D phase unwrapping
technique [6]. The 2D phase unwrapping utility can not distinguish between phase
wraps or the 27 discontinuities associated with branch cuts and so both the phase
wraps and the discontinuities associated with branch cuts are unwrapped. The sim-
ulated aperture averaged mean squared phase error is expected to be less than the
theoretical aperture averaged mean squared phase error because of the unwrapping
of the 27 discontinuities associated with the branch cuts in the measurement plane

phase function.

The comparison between the minimum variance reconstructor and the least
squares wavefront reconstructor of Section 3.4 shows that both the theoretical and
simulated aperture averaged mean squared phase errors are less for the minimum
variance wavefront reconstructor. The optimal reconstruction matrix, Mj,, for the
minimum variance reconstructor is optimized for the error metric given in equation
(40). The new least squares reconstruction matrix, Mf;f , does not incorporate the
measurement plane phase covariance in the optimization process. The minimum
variance wavefront reconstructor out performs the least squares reconstructor in

terms of the aperture averaged mean squared phase error.
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Aperture averaged mean squared phase error for theoretical (solid line)
and simulated (dash dot) minimum variance results. Aperture aver-
aged mean square phase error for theoretical (solid with asterisk) and
simulated (long dashes) results for the new least squares reconstructor.
The aperture averaged input phase variance is also shown (dotted line).
The true phase map was used to provide phase differences consistent
with the SCIP detection process. Gaussian average reflectivity profiles
with infinite spatial extent were used in both the theoretical and simu-
lated determination of the aperture averaged mean squared phase error.
The horizontal axis is the sampling parameter, . The measurement
plane sampling density was 8 by 8 evenly spaced samples in a 3 m by
3 m square collecting aperture. For the simulation results, the number
of independent measurement plane frames used to determine (e?), was
100.
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Comparison of simulated aperture averaged mean squared phase error
for minimum variance (solid line) and G & R least squares results (long
dashes). The aperture averaged input phase variance is also shown
(short dashes). The phase differences were determined from the mea-
surement plane reference phases. The horizontal axis is the sampling
parameter, 3. The measurement plane sampling density was 8 by 8
evenly spaced samples in a 3 m by 3 m square collecting aperture. The
number of independent measurement plane frames used to determine
(€2) were 100. The theoretical average reflectivity profile of the objects
used to estimate M, were Gaussian with infinite extent. The simulated
average reflectivity profile was matched to the theoretical for both the
G & R least squares and minimum variance simulations.
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The performance of the minimum variance wavefront reconstructor was com-
pared to a conventional least squares reconstructor (G & R least squares recon-
structor) as described in Section 2.2. Figure 25 shows a comparison of the simu-
lated aperture averaged mean squared phase error for the minimum variance recon-
structor and the G & R least squares reconstructor. The phase differences were
calculated from the measurement plane reference phase map and had the range,
—21 < A, (Z,) < 2m. The average reflectivity profile of the theory and simulation
were both assumed Gaussians with infinite spatial extent. No noise or estimation
errors were assumed. The simulated aperture averaged mean squared phase error
was determined on the coarse sampling grids for both the minimum variance and G

& R least squares reconstruction methods.

The comparison between the minimum variance reconstructor and the G & R
least squares wavefront reconstructor of Section 2.2 shows that the simulated aper-
ture averaged mean squared phase error is less for the minimum variance wavefront
reconstructor for all values of 8. This indicates that the minimum variance recon-
structor out performs the G & R least squares reconstructor in terms of the aperture

averaged mean squared phase error.

Figure 26 shows a comparison of the simulated aperture averaged mean squared
phase error for the minimum variance reconstructor and the G & R least squares
reconstructor of Section 2.2. The phase differences were calculated from the true
phase map and are consistent with the SCIP measurement process in equation (10).
The true phases are obtained from the reference phases by applying a 2D phase un-
wrapping technique [6]. Both the phase wraps and the 27 discontinuities associated

with branch cuts are unwrapped.

The comparison between the minimum variance reconstructor and the G &
R least squares wavefront reconstructor of Section 2.2 shows that the simulated

aperture averaged mean squared phase error, over the values of 8 shown, is less for
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Figure 26. Comparison of simulated aperture averaged mean squared phase error
for minimum variance (solid line) and G & R least squares results (long

dashes). The aperture averaged input phase variance is also shown
(short dashes). Phase differences were determined from the measure-
ment plane true phases. The horizontal axis is the sampling parameter,
. The measurement plane sampling density was 8 by 8 evenly spaced
samples in a 3 m by 3 m square collecting aperture. The number of in-
dependent measurement plane frames used to determine (€?), were 100.

The theoretical average reflectivity profile of the object used to estimate
M, was a Gaussian with infinite extent. The simulated average reflec-
tivity profile was matched to the theoretical for both the G & R least

squares and minimum variance simulations.
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the minimum variance wavefront reconstructor for both the reference and true phase

maps.

In comparing the simulated minimum variance results to the simulated G &
R least squares results, the mean squared phase error was determined on the same
coarse sampling grid for both the minimum variance and G & R least squares meth-
ods. The squared phase error for both the minimum variance and G & R least

squares reconstructors was averaged over the measurement plane sampling points.

Theoretical and simulated results should not be expected to match too well.

The differences between the theoretical and simulated results are attributable to:

1. The finite (instead of infinite) number of averages used in approximating (€®).

2. Precision errors in calculating the measurement plane phase covariances. Indi-
vidual phase covariances are accurate to the fourth decimal place. Processing

limitations determined the precision of the phase covariances.

3. The presence of branch cut and phase wrap discontinuities in the simulation.
The theory used to develop the phase covariances are based on ensemble statis-
tics and does not predict branch cuts and phase wraps which are single frame

effects.

Besides looking at the predicted and simulated aperture averaged mean squared
phase errors, the minimum variance wavefront reconstructor was used to reconstruct
phases for a variety of object sizes. The reference phases of the measurement plane
reference field were determined in accordance with equation (20). The true phases
were determined by unwrapping the reference phase with a 2D phase unwrapping

technique.

Examples of phase reconstructions are illustrated in Figures 27 through 30 for
various values of 3. Reconstructed phase maps for objects with angular subtenses
of 0.8667, 1.3000, 1.733, and 3.467 urad are illustrated. These objects correspond to
values of 3 of 0.31, 0.47, 0.63, and 1.25 respectively.
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(a) True Phase (0.8667 micro-radian object)

B e Fd e .
S 7ot OO “‘ N
=N NS

i,
e
\\ S S oSS
e

Phase (rad)
(@]

-1 1

y — axis (m) X — axis (m)
(b) Reconstructed Phase

Phase {rad)

y — axis (m) X — axis (m)

Figure 27. (a) True and (b) reconstructed phase for 0.8667 urad extended object
with Gaussian reflectance.
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(a) True Phase (1.3000 micro-radian object)
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Figure 28. (a) True and (b) reconstructed phase for 1.300 urad extended object
with Gaussian reflectance.
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(a) True Phase (1.7333 micro-radian object)
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Figure 29. (a) True and (b) reconstructed phase for 1.7333 urad extended object
with Gaussian reflectance.
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(a) True Phase (3.467 micro-radian object)
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Figure 30. (a) True and (b) reconstructed phase for 3.467 urad extended object
with Gaussian reflectance.
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The visual similarity between the true and reconstructed phases decreases as
the angular subtense of the object increases. This indicates that the sample spacing,
L, is becoming too large to sufficiently sample the measurement plane field. The
visual degradation can be related to (¢?) in Figure 22 through the object depen-
dent sampling parameter, 3. The aperture averaged squared phase error for phase
maps illustrated in Figure 27 through Figure 30 where 0.1033, 0.1343, 0.3770, and
0.4322 respectively. The sampling parameter can also be related to object dimen-
sions through the coherence area relationships in equations (55) through (57). The
given sampling is then sufficient for objects smaller than or equal to this determined
object size. If imaging larger objects is desired then the measurement plane sampling

density must be increased to lower § to an acceptable value.

Figure 31 shows the performance of the minimum variance reconstructor in
the presence of a branch cut which result from a zero in the measurement plane
field. The branch cut originates in the lower right corner of the upper plot and runs
parallel to the y-axis. The branch cut becomes a 27 phase discontinuity. The middle
plot shows the unwrapped phase map using a 2D phase unwrapping algorithm [6].
The plot in Figure 32 shows the reconstructed phase map for the same frame of data
using the minimum variance formalism. The lower right corner of Figure 32 shows
that the phase reconstructor provides continuous phase estimates in the presence of

a branch cut.

This section has demonstrated the performance of the minimum variance wave-
front reconstructor under ideal conditions (noise free, the same object model in the
theory and simulation, and no size or average reflectivity mismatches between the
theory and simulation). Phase and image reconstructions were shown for the mini-
mum variance wavefront reconstructor when imaging extended objects with a Gaus-
sian average reflectivity profile in the object plane. The reconstructed instantaneous
phases were shown to match the true phases for several different object sizes. For

values of 3 up to 0.47, the reconstructed phases appeared to be reasonable represen-
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Figure 31. (a) Branch cut and (b) unwrapped branch cut for 0.4333 prad extended
object with Gaussian reflectance.
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Figure 32. Minimum variance reconstructed phase for 0.4333 prad extended object
with Gaussian average reflectivity profile.

tations of the true phases. The aperture averaged squared phase error corresponding
to the object with 8 = 0.47 was 0.3770. This phase error squared corresponded to
12.23 % of the aperture averaged input phase variance. The phase reconstructions
for larger values of 3 appeared not to be sampled sufficiently. The theoretical ex-
pected aperture averaged mean squared phase error was shown to be less for the
minimum variance reconstructor than for the least squares reconstructor discussed
in Section 3.4. The least squares reconstructor used in the theoretical comparison
was a new implementation of the least squares formalism. The same error metric
as that for the minimum variance reconstructor was used. The error metric is illus-
trated in equation (40). Identical elementary functions, r; (%), were used for both
the minimum variance and least squares reconstructors in this comparison. The only
difference between the minimum variance and least squares reconstructors is in the
choice of the optimal reconstruction matrix, Mj,. The minimum variance formalism
makes use of the statistical properties of the object (in the form of measurement
plane phase covariances) in determining the optimal reconstruction matrix. The
new least squares reconstructor, just as conventional least squares reconstructors,
does not use any statistical information in determining the reconstruction matrix,

Mjy,. The new least squares reconstructor has an advantage over conventional least
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squares reconstructors in that phase estimates can be obtained at any point in the

measurement plane clear aperture.

The performance of the minimum variance wavefront reconstructor was demon-
strated for an extended random object with a Gaussian average reflectivity profile.
The Gaussian average reflectivity used in simulation matched the average reflec-
tivity profile used in the theoretical determination of the optimal solution matrix,
M. No measurement noise or estimation errors in the object average reflectivity
profile were assumed in the previous analysis. The performance of the minimum
variance reconstructor in the presence of noise must still be demonstrated. Since the
reconstructor depends on prior knowledge of the object support and the average re-
flectivity profile of the object, the sensitivity to mismatches between the theoretical
and simulated object average reflectivity profile is of interest. The next section looks
at the performance of the minimum variance reconstructor under these sub-optimal

conditions.

4.4 Performance and Sensitivity Analysis

This section discusses the performance of the minimum variance reconstructor
in the presence of estimation errors and noise. The estimation errors considered are
due to mismatches in the object average reflectivity profile. The average reflectiv-
ity function of the object directly affects the phase covariances in the measurement
plane. Therefore, the effect of average reflectivity variations on the performance of
the minimum variance wavefront reconstructor need to be understood. Three object
average reflectivity mismatches between the theoretical development and simulation
of the minimum variance wavefront reconstructor are investigated. The first average
reflectivity mismatch incorporates finite object dimensions in the simulation of the
minimum variance wavefront reconstructor. A Gaussian average reflectivity profile
with infinite extent is used to compute the reconstruction matrix, Mjy, in the theo-

retical development of the minimum variance wavefront reconstructor. In simulation,

89




the average reflectivity profile of the object was set to zero outside the boundaries
of the object support. The aperture averaged mean squared phase error is calcu-
lated for this average reflectivity mismatched case. The second average reflectivity
estimation error investigates mismatches between the shape of the theoretical and
simulated object average reflectivity profiles. Two aspects of shape mismatches are
investigated. The first aspect involves mismatches between the spatial details of the
theoretical and simulated object average reflectivities. The theoretical object aver-
age reflectivity profile was assumed a Gaussian with infinite spatial extent while the
spatial features of the simulated average reflectivity profile were assumed to be a +
or an X. The second shape mismatch assumes a Gaussian average reflectivity profile
with infinite spatial extent in the theory but the simulated average reflectivity profile
is constant with spatial features of a +. The third estimation error investigated is a
mismatch between the expected size of the object and the actual size of the object.
Differences in apparent object size will occur because of variations in the orientation

of the object with respect to the optical axis of the imaging system.

The performance of the minimum variance reconstructor in the presence of
additive white Gaussian noise corrupting the A¢ measurements is also discussed.
Additive white Gaussian noise is the type of noise expected in photon noise limited

processes [26)].

The first estimation error investigated involved a mismatch between the the-
oretical and simulated object average reflectivities. The theoretical object average
reflectivities were assumed to be Gaussian with infinite extent while the simulated
object average reflectivities were assumed to be truncated Gaussians. For the trun-
cated Gaussian, the average reflectivity profile is given by equation (54) but the
value of the average reflectivity outside the support region of the object was set to
zero. The e~! angular subtense of the theoretical object average reflectivities and
the angular subtense of the object support of the simulated average reflectivities

was 0.4333, 0.8667, 1.3000, 1.7333, and 2.1667 urad, respectively. In Figure 33, the
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Minimum aperture averaged mean squared phase error for theoretical
(bottom solid line) and simulated (long dashes) minimum variance re-
sults. Minimum aperture averaged mean square phase error for theo-
retical (top solid) and simulated (dash - dot) results for the new least
squares reconstructor. The aperture averaged input phase variance is
also shown (dotted line). The true phase map was used to provide
phase differences. Gaussian average reflectivity profiles with infinite
spatial extent were used in the theoretical development of the aperture
averaged mean squared phase error. Truncated Gaussian average re-
flectivity profiles were used for the simulated objects. The horizontal
axis is the sampling parameter, 8. The measurement plane sampling
density was 8 by 8 evenly spaced samples in a 3 m by 3 m square col-
lecting aperture. For the simulation results, the number of independent
measurement plane frames used to determine (€?), were 100.
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simulated aperture averaged mean squared phase error was determined as a function
of 3 for both the minimum variance and least squares methods and compared to the
corresponding theoretical values. The new least squares reconstructor discussed in
Section 3.4 was used to make the comparison. For the simulated results, the true
phase map was used to determine the measurement plane phase differences. The
simulated aperture averaged mean squared phase error does not include the effects
of branch cuts or phase wraps. Since both the phase wraps and the 27 discontinuities
associated with the branch cuts are unwrapped from the measurement plane refer-
ence phase, the simulated aperture averaged mean squared phase error is expected to
be lower than the corresponding theoretical aperture averaged mean squared phase

error.

The simulated aperture averaged mean squared phase error results are smaller
than those shown in Figure 24 for both the least squares and minimum variance
methods. The coherence area for the truncated Gaussian in the simulation is larger
than the coherence area for the Gaussian with infinite extent used in the theoretical
estimation of the aperture averaged mean squared phase error. Hence, the simulated
value of 3 is less than the theoretical value of 3, resulting in a lower aperture averaged

mean squared phase error for the simulated case.

Figure 34 shows the comparison of the aperture averaged mean squared phase
error between the G & R least squares reconstructor discussed in Section 2.2 and the
minimum variance reconstructor. The reference phases were used to determine the
phase differences. The presence of the phase wraps is somewhat mitigated by only
using coarse grid points to compute the aperture averaged mean squared phase error
instead of integrating across the measurement plane aperture. Therefore, the refer-
ence phase map is used for comparisons between the simulated minimum variance
and G & R least squares sampled aperture averaged mean squared phase error. The
average reflectivity profile of the theoretical object was assumed to be a Gaussian

with infinite extent and the simulated average reflectivity was assumed a truncated
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Figure 34. Minimum aperture averaged mean squared phase error for the minimum
variance (solid line) and G & R least squares (long dashes) formalisms.
Also included is the input aperture averaged mean squared error (short

dashes). The horizontal axis is the sampling parameter, 3. Gaussian
average reflectivity profiles with infinite spatial extent were used in the
determination of the optimal reconstruction matrix for minimum vari-
ance simulation. Truncated Gaussian average reflectivity profiles were
used for the simulated objects in both the minimum variance and G &

R least squares methods.
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Figure 35. Average reflectivity distribution for a random + object with 1.300 prad
angular subtense.

Gaussian. The number of random frames used to determine the aperture averaged
mean squared phase error for both the G & R least squares and minimum variance
methods was 100. In terms of the aperture averaged mean squared phase error,
Figure 34 shows that the minimum variance reconstructor out performs the G & R

least squares wavefront reconstructor over the useful range of 3.

To investigate the first of the two shape mismatches between the theoreti-
cal and simulated object average reflectivities, the random simulated object average
reflectivity was assumed to have the shape of a +. For a useful wavefront reconstruc-
tor, the reconstruction process should not be overly sensitive to mismatches between

the theoretical and simulated shape of the object average reflectivity profile. The
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theoretical object was assumed to have a Gaussian average reflectivity profile with
infinite extent as described by equation (54). The parameter R was chosen so that
the e~! width of the theoretical object average reflectivity was 1.300 prads. The
simulated object average reflectivity was the product of a unit magnitude average
reflectivity in the shape of a cross with the Gaussian envelope function given by
equation (54). Figure 35 shows the simulated object average reflectivity profile.
The simulated object average reflectivity was set to zero outside the boundaries of

the object support. The angular subtense of the simulated object was 1.300 yrads.

The random object field for the + object was Fourier transformed and the ref-
erence phase distribution was formed. The reference phase was unwrapped resulting
in the measurement plane true phase. Figure 36 illustrates the (a) true phase and

the (b) reconstructed phase for one measurement plane phase realization.

To see the differences between the true and reconstructed instantaneous phase
maps pictured in Figure 36, a plot of the point-to-point phase error squared is useful.
The phase error squared is the pointwise square of the difference between the true
and the reconstructed phases. Figure 37 plots the phase error squared for the instan-
taneous phases depicted in 36. The increased error along the edge of the aperture
results from errors estimating the edge points of the aperture. Estimates of points on
the edge of the aperture have fewer neighboring measurement points than estimates

in the interior of the aperture and are therefore less precise.

The instantaneous images were obtained by Fourier transforming the measure-
ment plane fields. Averaging was accomplished by pointwise averaging the irradiance
of 100 separate image frames. Figure 38 shows the true and reconstructed averaged
images.

The features of the cross are distinguishable on the reconstructed object and
true image. No measurement noise was assumed so the average true image repre-
sented the diffraction limited image of a random cross object obtained from a 3 m by

3 m square collecting aperture. To better see the differences between the true and
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(a) True Phase (1.300 micro-radian: + object)
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(b) Reconstructed Phase
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Figure 36. Measurement plane phase maps of (a) true phase and (b) reconstructed
phase for 1.300 prad random cross object. The simulated average reflec-
tivity profile was the product of a unit amplitude + object subtending
1.300 prads and a Gaussian envelope function. The simulated average
reflectivity was zero outside the boundaries of the object support. The
theoretical object average reflectivity was assumed a Gaussian with in-
finite spatial extent. The e™! width of the theoretical object average
reflectivity was 1.300 prads.
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Phase Error Squared (1.300 micro-radian: + object)

Phase Sq. (rad sq.)

y-axis X — axis

Figure 37. Measurement plane phase error squared for 1 frame of 1.300 urad ran-
dom cross.

reconstructed images, a plot of the image error squared is provided. The point by
point square of the difference between the averaged true and averaged reconstructed

image was determined. The image error squared is shown in Figure 39.

The plot in Figure 39 shows that the reconstructed image formed by using
8 by 8 samples across the measurement plane aperture and the minimum variance
wavefront reconstruction formalism produces a near diffraction limited image of the
object in the noise free case. The magnitude of the image error is given by,

Li(5) L (%)
I, (0) I, (0)

€img (f) = ’ (58)
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1(x)/1(0)

1(x)/1(0)

Figure 38.

True Image (random + object)

y (m) x (m)

y (m) X (m)

(a) True image and (b) reconstructed image for cross object with 1.300
prad finite extent. The measurement plane sampling density was 8 by 8
evenly spaced samples in a 3 m by 3 m square collecting aperture. The
number of independent image frames used to average was 100.
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Image Error Squared (1.300 micro-radian: + object)
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Figure 39. Image error squared for an object with a Gaussian average reflectivity
profile and spatial structure in the form of a 4+. The object had a 1.300
prad angular subtense. The quantities, I; (z), and, I, (z), are the true
and reconstructed image irradiance at a point, respectively.

where, I; (Z;), is the true irradiance at image plane spatial coordinate z;. The quan-
tity, I, (Z;), is the reconstructed image plane irradiance using the minimum vari-
ance formalism. By evaluating equation (58), the maximum difference between
the true and reconstructed averaged irradiance values was determined to be 3.72 %
([€img (2)),,4; = 0.0372). The reconstructed image is pointwise equal to the diffrac-

tion limited image to within this percentage.

By looking at the true and reconstructed averaged images in Figure 38, the
features of the cross are apparent. To demonstrate that the cross features of the

true and reconstructed averaged images are reproductions of object features and not
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Object Emittance Profile (1.300 micro-radian: X — object)
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Figure 40. Average reflectivity distribution for a random X object with 1.300 prad
angular subtense.

measurement plane aperture effects, the + object will be rotated 45 degrees and
the simulation repeated. If features appear in the true and reconstructed averaged
images along the rotated axis then the structural features of the object are being

sensed by the image detection process.

Figure 40 shows an object average reflectivity profile for an object which looks
like an x but has a spatial average reflectivity distribution given by equation (54)

along the surface of the x.

The simulated average reflectivity profile is the product of the Gaussian enve-
lope function given in equation (54) and a unit amplitude random x object. The

average reflectivity profile is set to zero outside the boundaries of the object support.
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The average reflectivity at the tips of the x is smaller than the on axis average re-
flectivity by approximately 63 %. The true and reconstructed averaged images were
determined for 100 independent image frames. No measurement noise was assumed
so the averaged true image represented the diffraction limited simulated image of
the x object obtained from a 3 m by 3 m square collecting aperture. Figure 41
shows the a) true and b) reconstructed averaged images for 100 frame averages. In
both the true and reconstructed averaged images, a bulge appears in the expected
position of the x. This bulge was absent from the averaged true and reconstructed
images corresponding to the + object in Figure 38. Detailed features of the cross are
not present in the true and reconstructed averaged images because the separation
of the tips of the x object is equal to the diffraction limit of the imaging system.
The true and reconstructed images are unresolved and only gross features are dis-
cernible. The presence of the bulge in the true and reconstructed averaged images
corresponding to the X object indicates the presence of spatial object features in the

true and reconstructed averaged images.

The point by point square of the difference between the averaged true and
averaged reconstructed image corresponding to the random X simulated object was

determined. The image error squared is shown in Figure 42.

The plot in Figure 42 shows that the reconstructed image formed by using
8 by 8 samples across the measurement plane aperture and the minimum variance
wavefront reconstruction formalism produces a near diffraction limited image of the
object in the noise free case. By evaluating equation (58), the maximum difference
between the true and reconstructed averaged irradiance values was determined to be

3.65 % ([fimg (.’f

).ae = 0.0365). The reconstructed image is pointwise equal to the

diffraction limited image to within this percentage. The small differences between
the true and reconstructed averaged images indicates that the reconstruction process
does not require a detailed description of the theoretical average reflectivity profile

to reconstruct spatial average reflectivity features in the simulation.
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True Image (random X object)
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Figure 41. (a) true image and (b) reconstructed image for x object with 1.300
prad finite extent. The measurement plane sampling density was 8 by 8
evenly spaced samples in a 3 m by 3 m square collecting aperture. The
number of independent image frames used to average was 100.
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Image Error Squared (1.300 micro—radian: X — Object)

x107°

1.4

Figure 42. Image error squared for an object with a Gaussian average reflectivity
profile and spatial structure in the form of an x. The object had a 1.300
prad angular subtense. The quantities, I; (z), and, I, (z), are the true
and reconstructed image irradiance at a point, respectively.

The second shape mismatch between the theoretical and simulated object av-
erage reflectivities assumed the simulated object average reflectivity profile had a
constant value over the support regions of the object. The theoretical object average
reflectivity used to determine the optimal reconstruction matrix, Mj,, was assumed
to be the spatially Gaussian average reflectivity profile given by equation (54). The
average reflectivity profile of the simulated object was in the shape of a + but had a
constant magnitude equal to the value of the on axis average reflectivity of the the-
oretical object. The average reflectivity profile of the simulated object is illustrated

in Figure 43.
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Reflected Object Brightness Distribution (1.300 micro-radian)
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Figure 43. Average reflectivity distribution for a random cross object with 1.300
prad angular subtense and a constant average reflectivity. The theo-
retical object average reflectivity was a Gaussian with infinite extent.
The simulated object average reflectivity was constant over the support
regions of the object and zero elsewhere.

The random object field for the + object was Fourier transformed and the ref-
erence phase distribution was formed. The reference phase was unwrapped resulting
in the measurement plane true phase. Figure 44 illustrates the (a) true phase and

the (b) reconstructed phase for one measurement plane phase realization.

The differences between the true and reconstructed instantaneous phase maps
pictured in Figure 44 are shown by plotting the phase error squared. Figure 45 plots
the phase error squared for the instantaneous phases shown in 44. As illustrated by

Figure 45, the true and reconstructed phases are similar to each other except along
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(a) True Phase (1.300 micro-radian: cross object)
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Figure 44. Measurement plane phase maps of (a) true phase and (b) reconstructed
phase for 1.300 purad random cross object.




Phase Error Squared (1.300 micro-radian: Cross Object)

y — axis -2 -15

X — axis

Figure 45. Measurement plane phase error squared for 1 frame of 1.300 prad ran-
dom cross.

the edges of the collecting aperture. The instantaneous images were obtained by
Fourier transforming the measurement plane fields. Averaging was accomplished by
pointwise averaging the irradiance of 100 separate image frames. Figure 46 shows
the true and reconstructed averaged images. The true and reconstructed averaged
images appear similar to one another. To better see the differences between the true
and reconstructed averaged images, the image error squared was determined. The

image error squared is shown in Figure 47.

Figure 47 shows that the reconstructed averaged image and the diffraction
limited averaged image of the cross are qualitatively similar. The maximum differ-
ence between any spatial point of the true image and the reconstructed image in

accordance with equation (58) was 8.24 % ([€img ()], . = 0.0824). Furthermore,

max
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Figure 46.

True Image (random cross object)
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(a) True image and (b) reconstructed image for cross object with 1.300
prad finite extent. The measurement plane sampling density was 8 by 8
evenly spaced samples in a 3 m by 3 m square collecting aperture. The

number of independent image frames used to average was 100.
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Image error Squared (1.300 micro-radian: Cross Object)
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Figure 47. Image error squared for 100 frames of 1.300 urad random cross object.
The quantities, I; (z), and, I, (z), are the image plane irradiances at a
point for the true image irradiance and the reconstructed image irradi-
ance, respectively.

this illustrates that the reconstructor performance is not substantially degraded by
mismatches in the magnitude between the theoretical and simulated average reflec-

tivities for objects with similar spatial features.

The third estimation error investigated involved mismatches between the the-
oretical and simulated object sizes. A fundamental assumption in determining the
optimal reconstruction matrix, M, in the minimum variance formalism is the di-
mensions and shape of the average reflectivity distribution of the object. It is reason-
able to have some prior knowledge about the object support such as the general shape

(circle, rectangle, square). However, a desirable reconstruction process should not be
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overly sensitive to mismatches between the expected size of the object and the actual
size of the object. To test the sensitivities of the aperture averaged mean squared
phase error to mismatches between the theoretical and simulated object sizes, the
optimal reconstruction matrix, M;,, was determined for an object subtending 1.7333
prad. In the theoretical determination of Mjy,, a Gaussian object average reflectivity
profile with infinite extent was assumed in accordance with equation (54). The phase
covariance was then determined for objects subtending 1.7333, 2.1667, 2.600, 3.0333
and 3.4667 urad. These angles of subtense correspond to object size mismatches of
0, 25, 50, 75, and 100 percent. Phase covariances for smaller object size mismatches
(- 25 and - 50 percent) were also determined and similar results were obtained. A
fixed Mj, corresponding to a 1.7333 urad object was used in equation (40) along
with the various phase covariances to calculate the aperture averaged mean squared
phase error as a function of a mismatch between the theoretical object size and the
simulated object size. In the simulation, truncated Gaussian average reflectivities
were used with angular subtenses of 1.7333, 2.1667, 2.600, 3.0333 and 3.4667 urad,

respectively.

Figure 48 shows the theoretical sub-optimal (solid line) aperture averaged mean
squared phase error as a function of object size mismatch. For reference the optimal
aperture averaged mean squared phase error for equal theoretical and simulated
object size is shown by the dashed line. The aperture averaged input phase variance

for a 1.7333 urad object (dotted line) is also illustrated.

The aperture averaged mean squared phase error is not strongly affected by
mismatches between the expected size of the object and the actual size of the object.
Errors in size estimation of up to 100 percent produce relatively small changes in
(€?). For larger size mismatches, the sampling error begins to dominate and so the
relative difference between the optimal and sub-optimal aperture averaged mean

squared phase error decreases.
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Aperture Averaged Mean Squared Phase Error vs Object Size Mismatch
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Figure 48.

1 1 1
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percent object size mismatch

Aperture averaged mean squared phase error as a function of mismatch
between expected object size and actual object size. Optimal recon-
struction matrix was determined for an object subtending 1.7333 urad.
Horizontal axis shows percentage of mismatch between the assumed ob-
ject size and the actual object size. The dotted line shows the aperture
averaged input phase variance for a 1.7333 purad object. The solid line
shows (€?) as a function of expected to actual object size mismatch. The
dashed line shows (e2) for a perfect object size estimation. The theoret-
ical average reflectivity profile was a Gaussian with infinite extent and
the simulated average reflectivity profile was a truncated Gaussian.




Theoretical Aperture Averaged Mean Squared Phase Error vs. Noise
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Figure 49. Theoretical minimum variance aperture averaged mean squared phase

error as a function of noise level and sampling parameter, 3. Additive
white Gaussian noise levels were 0 (bottom line), 0.2 (second line from
bottom), 1 (third line from bottom), and 2 (top line) radians squared.

Thus far, the results presented have been for noise free cases. The presence of

additive white Gaussian noise such as discussed in chapter III will degrade a recon-

structors performance. The theoretical determination of the optimal reconstruction

matrix was modified in accordance with the discussion outlined in Section 3.6. Equa-

tion (53) was used to modify the diagonal terms of the phase difference correlation

matrix, ®,n,. Figure 49 shows the theoretical aperture averaged mean squared phase

error for the minimum variance reconstructor for noise level variances, o2, of 0, 0.2,

1, and 2 radians squared. The reference phase map was used to determine the phase

differences used as inputs to the minimum variance wavefront reconstructor. The
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Theoretical new least squares aperture averaged mean squared phase
error as a function of noise level and sampling parameter, 3. Additive
white Gaussian noise levels were 0 (bottom line), 0.2 (second line from
bottom), 1 (third line from bottom), and 2 (top line) radians squared.

horizontal axis is the sampling parameter, 5. As expected, the aperture averaged

mean squared phase error increases for an increase in the noise.

A plot of the theoretical aperture averaged mean squared phase error for the

least squares reconstructor of Section 3.4 is shown in Figure 50. Curves are shown

for additive white Gaussian noise levels of 0, 0.2, 1, and 2 radians squared. The

aperture averaged mean squared phase error increases as the noise level increases.

Figure 51 shows a comparison between the simulated minimum variance and

G & R least squares aperture averaged mean squared phase error as a function of

noise and sampling parameter, 3. The reference phase map was used to determine
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the phase difference inputs used to estimate (¢?). The variance of the additive white
Gaussian noise was 0.2 radians squared. The aperture averaged mean squared phase
error was simulated on the identical coarse sampling grid for both the minimum
variance and G & R least squares reconstructors. The aperture averaged input
phase variance is shown for reference (top line). In terms of (?), the minimum
variance reconstructor out-performs the G & R least squares reconstructor over the

useful ranges of .

Figure 52 compares the simulated aperture averaged mean squared phase error
of the minimum variance and G & R least squares methods for an additive Gaussian
noise variance, 2, of 1 radian squared. The results are plotted against the sampling
parameter 8. As expected, both the simulated minimum variance and G & R least
squares aperture averaged mean squared phase errors are higher than for the no noise
case and the o2 = 0.2 case. The simulated aperture averaged mean squared phase
error for the minimum variance method is lower than for the G & R least squares

wavefront reconstructor for the values of 3 shown.

Finally, Figure 53 shows the results for the simulated aperture averaged mean
squared phase error for an additive white Gaussian noise variance, o2, of 2 radians
squared. The aperture averaged mean squared phase error for both the minimum
variance and G & R least squares wavefront reconstructors is pointwise higher than

the corresponding curves for lower noise values.

The performance of the minimum variance reconstructor under various noisy
conditions was demonstrated. The theoretical aperture averaged mean squared phase
error was presented as a function of noise and sampling parameter, 3, for both the
minimum variance and least squares methods. The simulated aperture averaged
mean squared phase error was determined as a function of various noise levels and
values for the minimum variance and G & R least squares methods. In both theory
and simulation the minimum variance reconstructor had a lower aperture averaged

mean squared phase error than the corresponding least squares method.
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Aperture Averaged Mean Squared Phase Error (noise = 0.2 rad. sq.)
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Simulated aperture averaged mean squared phase error for minimum
variance and G & R least squares methods as a function of noise level and
sampling parameter, 3. Additive white Gaussian noise levels were 0.2
radians squared. The bottom solid line indicates the simulated aperture
averaged squared phase error for the minimum variance reconstructor
and no noise. The dashed line second from the bottom represents the
minimum variance simulated aperture averaged mean squared phase
error with 02 = 0.2 radians squared. The third line from the bottom
is the simulated G & R least squares results and no noise. The fourth
line from the bottom shows the simulated performance of a G & R least
squares reconstructor with the same noise variance as the minimum
variance reconstructor. The top line shows the aperture averaged input
phase variance for no noise.
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Aperture Averaged Mean Squared Phase Error (noise = 1.0 rad. sq.)
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Figure 52. Simulated aperture averaged mean squared phase error for minimum

variance and G & R least squares methods as a function of noise level and
sampling parameter, 3. Additive white Gaussian noise levels were 1.0
radians squared. The bottom solid line indicates the simulated squared
error for the minimum variance reconstructor and no noise. The dashed
line second from the bottom represents the minimum variance simulated
aperture averaged mean squared phase error with o2 = 0.2 radians
squared. The third line from the bottom is the simulated G & R least
squares results and no noise. The fourth line from the bottom shows
the simulated performance of a G & R least squares reconstructor with
the same noise variance as the minimum variance reconstructor. The
top line shows the aperture averaged input phase variance for no noise.
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Aperture Averaged Mean Squared Phase Error (noise = 2.0 rad. sq.)
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Figure 53. Simulated aperture averaged mean squared phase error for minimum

variance and G & R least squares methods as a function of noise level and
sampling parameter, 3. Additive white Gaussian noise levels were 2.0
radians squared. The bottom solid line indicates the simulated squared
error for the minimum variance reconstructor and no noise. The dashed
line second from the bottom represents the minimum variance simulated
aperture averaged mean squared phase error with o2 = 0.2 radians
squared. The third line from the bottom is the simulated G & R least
squares results and no noise. The fourth line from the bottom shows
the simulated performance of a G & R least squares reconstructor with
the same noise variance as the minimum variance reconstructor. The
top line shows the aperture averaged input phase variance for no noise.
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4.5 Summary

This chapter presented results on the performance of the minimum variance
reconstructor for a variety of object classes. Throughout this chapter, the theoretical
average reflectivity profile assumed to calculate the optimal reconstruction matrix,
M;,, was Gaussian with infinite spatial extent. In general, the simulated average
reflectivity profiles were different than the assumed theoretical model. In Section
4.1, the simulated average reflectivity profile was a truncated Gaussian with spatial
features. Objects which have surface profiles that are smooth on the scale of an op-
tical wavelength were discussed and good reconstructions for a simulated doughnut
and tri-bar object average reflectivities were demonstrated. Section 4.2 discussed
a simple diffuse reflector such as a pair of random point sources. The separation
of the simulated random point sources was equal to the e~* width of the Gaussian
average reflectivity profile used in the theoretical determination of Mj,. The random
double point source object demonstrated the near diffraction limited resolution of
the minimum variance reconstructor under noiseless conditions. A point of interest
is that only 64 evenly spaced sample points were used in the measurement plane to
determine the near diffraction limited image. Section 4.3 showed results for extended
objects. For sampling reasons, a Gaussian reflected average reflectivity profile with
infinite extent was modeled in the simulation. This section had an optimal match
between the theory and simulation and no noise effects were included. The theo-
retical aperture averaged mean squared phase error was determined as a function of
sampling parameter, 3, for both the minimum variance and least squares methods.
The least squares implementation discussed in Section 3.4 was used to do the theo-
retical comparisons. Simulated comparisons between the minimum variance and G
& R least squares reconstructor were presented for various values of # and no noise.
In both theory and simulation, the minimum variance wavefront reconstructor out
performed the corresponding least squares reconstructor. The last section illustrated

the performance of the minimum variance reconstructor under sub-optimal condi-
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tions. The simulated aperture averaged mean squared phase error was determined as
a function of § for a simulated object with a truncated Gaussian average reflectivity
profile. Some structure was added ( x and + object) to demonstrate that the recon-
structor was able to reproduce surface features for diffuse scatterers. Variations in
object average reflectivity of up to 63 percent (along the most distant points along
the boundary of the object support) was shown to have negligible effect on the qual-
ity of the reconstruction of the + image. Mismatches between the expected object
size and the actual object size were shown to have a small effect on the aperture
averaged mean squared phase error. Finally, the aperture averaged mean squared
phase error was determined as a function of the sampling parameter, B, for additive,
white, Gaussian noise levels of 02 = 0, 0.2, 1.0, and 2.0 radians squared. The mini-
mum variance reconstructor had a pointwise lower aperture averaged mean squared
phase error than the corresponding least squares reconstructor for comparable noise

values.
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V. Conclusions

A new wavefront reconstructor has been developed for a synthetic aperture
coherent imaging system. The reconstructor uses atmospheric distortion free phase
differences obtained from the Sheared Coherent Interferometric Photography (SCIP)
technique discussed in Chapter II. The phase differences are used in a new minimum
variance technique to estimate the 2D measurement plane phase. Key results of this
work are reviewed in this chapter, conclusions are presented, and possible future

directions for research in this area are discussed.

5.1 Results and Conclusions

The minimum variance reconstructor was developed in chapter III and prelim-
inary testing of the reconstructor was accomplished. The scaling and throughput
(implementation of the linear algebra) of the minimum variance reconstructor was
demonstrated by successfully reconstructing the measurement plane 2D phase map
for an off-axis point source object. The statistical aspects of the minimum variance
wavefront reconstructor were validated by comparing the fundamental equations in
the reconstructor to numerical integrations in widely available mathematical soft-
ware packages including MathCad and Mathematica. The good results from the
throughput and statistical assessments, and the reconstruction of a simple determin-
istic object average reflectivity profile leads to the conclusion that the theoretical
equations and their implementation in the minimum variance wavefront reconstruc-

tor are correct.

Measurement plane 2D phase maps were successfully reconstructed for (a) an
optically smooth object with a doughnut average reflectivity distribution and (b) an
optically smooth tri-bar object. The reconstructed phase maps for both cases had
the character of low pass versions of the true phase. The images associated with the

reconstructed phases were similar to the average reflectivity profile for the respective
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objects. The good agreement between the true and reconstructed images leads to
the conclusion that the minimum variance reconstructor can successfully reproduce

images of optically smooth objects with spatial features.

A random double point source object was used to demonstrate the resolution
of the minimum variance wavefront reconstructor. The term random point source
refers to an object that is optically rough but has physical dimensions that are much
smaller than the resolution of the optical system. The random double point source
had two random point sources symmetrically spaced about the object plane origin.
The separation of the points was set equal to the diffraction limited resolution ofa3
m by 3 m square collecting aperture in a coherent imaging system. The reconstructed
image of the point sources for 100 independent image frame averages reproduced the
gap between the sources. The peak-to-peak point separation of both the true and
reconstructed images was 0.85 m. This separation is within 2 % of the theoretically
determined diffraction limit of a 3 m by 3 m filled square aperture in a coherent
imaging system. The FWHM measurement of the image corresponding to one lobe
from the random double point source object was 0.42 m for the true image and 0.62
m for the reconstructed image. The accuracy of the measurement was + 0.025 m.
The resolution of the gap between the double point sources indicates that for only 8
equally spaced measurement plane samples in a given linear direction, the minimum
variance wavefront reconstructor is capable of producing nearly diffraction limited

images for the case of no noise.

An extended optically rough object with a Gaussian average reflectivity distri-
bution was reconstructed for an object subtending 0.4333 prad. The reconstructed
object appeared similar to the averaged coherent image formed by a 3 m by 3 m
square aperture. The reconstructed field used SCIP phase difference information
from an 8 by 8 point measurement grid to estimate the 2D phase map. The recon-
structed phase map and the measurement plane field amplitude information were

used to form the measurement plane reconstructed field. The reconstructed image

120




was obtained by averaging 100 reconstructed images in an analogous fashion as for
the true image. The visual quality of the true and reconstructed averaged images
combined with the low theoretical and simulated aperture averaged mean squared
phase error for this object leads to the conclusion that the minimum variance wave-

front reconstructor works for small, featureless random extended objects.

Several measurement plane 2D phase maps were reconstructed for differing
object sizes. The reconstructed phase maps were compared to the true phase map
obtained by unwrapping the reference phase with a 2D phase unwrapping utility.
Favorable comparisons between the true and reconstructed phases were observed for
sampling parameter, 3, values in the range of 3 < 0.47. The sampling parameter, B,
is defined as the sample spacing, L, divided by the square root of the coherence area
of the object in the measurement plane, v/A.. For larger values of § the measurement

plane sampling was no longer dense enough to reliably reproduce the true phase.

The theoretical and simulated aperture averaged mean squared phase error was
determined as a function of 4 and compared with the theoretical and simulated aper-
ture averaged mean squared phase error for the least squares reconstructor discussed
in Section 3.4. Perfect agreement between the theory and simulation and no mea-
surement noise was assumed. The simulated aperture averaged mean squared phase
error was also compared to the simulated aperture averaged mean squared phase
error for the G & R least squares wavefront reconstructor. The G & R least squares
reconstructor represents a specific implementation of the class of conventional least
squares reconstructors discussed in Section 2.2. In terms of the aperture averaged
means squared phase error metric, the minimum variance reconstructor provides bet-
ter performance than the corresponding least squares reconstructors over the useful
range of 3. Differences between the theoretical and simulated results are attributable

to,

1. The finite (instead of infinite) number of averages used in approximating (€?).
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2. Precision errors in calculating the measurement plane phase covariances. Indi-
vidual phase covariances are accurate to the fourth decimal place. Processing

limitations determined the precision of the phase covariances.

3. Small differences between the theoretical and simulated average reflectivity
profiles. The theoretical average reflectivity profile was a Gaussian with infinite
extent. The simulated average reflectivity profile was a Gaussian which was

truncated at the boundaries of the object support (valid for Section 4.4 only).

4. The presence of branch cut and phase wrap discontinuities in the simulation.

The theory used to develop the phase covariances does not predict branch cuts.

By relating the object coherence area to the physical dimensions of the object,
the expected error can be determined in terms of object size and measurement plane
sample spacing. Smaller objects and smaller sample spacings lead to lower expected

aperture averaged mean squared phase errors.

An optically rough extended object with a Gaussian average reflectivity profile
in accordance with equation (54) and spatial details resembling an x was success-
fully reconstructed and shown to be nearly equivalent to the diffraction limited image
produced by a 3 m by 3 m square collection aperture. For 100 image frames, the
averaged coherent true image was, in accordance with equation (58), identical to the
reconstructed image to within 3.65 %. Varying the object size in the average reflec-
tivity profile in the simulation while holding the optimal reconstruction matrix, M,
constant was characterized in terms of the aperture averaged mean squared phase
error. Variations in the magnitude of the object average reflectivity was shown to
have negligible affect. The Gaussian average reflectivity profile given in equation
(54) was used in the theoretical development of M;, and a constant object average
reflectivity profile resembling a + was used in the simulation process. The difference
between the expected (theoretical) average reflectivity illustrated in equation (54)
and the constant simulated average reflectivity was as high as 63 % at the tips of

the -+ object and still a near diffraction limited image was produced. The maximum
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pointwise difference between the diffraction limited image irradiance and the recon-
structed image irradiance for the average reflectivity mismatched case was 8.24 %.
From these results it is concluded that the minimum variance reconstructor is not

highly sensitive to the average reflectivity model of the object.

Theoretical plots of the aperture averaged mean squared phase error were pre-
sented for both the minimum variance wavefront reconstructor and the least squares
reconstructor discussed in Section 3.4. In the theoretical results, additive white
Gaussian noise was incorporated into the measurement process. Plots of (€?) versus
8 showed an increase in the expected squared error for increases in the noise vari-
ance, o2. Four separate curves were plotted corresponding to noise variances of 0,
0.2, 1, and 2 radian squared. Each subsequent curve had a pointwise higher value
of (e2) for every value of 3. However, even for the highest noise variance (02 = 2),
the maximum value of (€?) was still less than the aperture averaged input phase
variance of 3.2 radians squared. The minimum variance theoretical aperture aver-
aged mean squared phase error was less than the theoretical least squares aperture
averaged mean squared phase error for all values of § shown. Comparisons of the
simulated aperture averaged mean squared phase error between the minimum vari-
ance and both least squares reconstructors (discussed in Sections 2.2 and 3.4) showed
a corresponding lower aperture averaged mean squared phase error for the minimum

variance wavefront reconstructor over the given values of 3.

5.2 Contributions

The most important results obtained during the course of this research are

listed below. The contributions are not listed in any order of precedence.

1. The minimum variance wavefront reconstructor is the first coherent wavefront
reconstructor which uses statistical information (in the form of measurement
plane phase covariances) to estimate the wavefront in the measurement plane

of a synthetic aperture coherent imaging system. The impact of measurement
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noise and imprecise knowledge of the object average reflectivity profile was

evaluated.

2. The minimum variance reconstructor, unlike a conventional least squares re-
constructor, allows for interpolation between reconstructed measurement plane

phase estimates.

3. The performance of the minimum variance reconstructor in terms of the the-
oretical and simulated aperture averaged mean squared phase error is better

than the performance of conventional least squares reconstructors.

4. The aperture averaged mean squared phase error is related to measurement
plane sampling requirements and object dimensions through the sampling pa-
rameter, § = \/LA_C for a specific object. The quantity, L is the distance between
sample points in the measurement plane and A, is the coherence area of the

object in the measurement plane.

5. A new least squares reconstructor was developed which provides for interpola-

tion between reconstructed measurement plane phase estimates.

These results represent the highlights of the contributions made during the evaluation
of the minimum variance wavefront reconstructor. The next section describes future

areas of study identified during the course of this research.

5.3 Future research directions

The following list describes potentially beneficial areas of research related to
the coherent imaging area. The topics described were identified during the course of

this research and merit further consideration.

1. Development of a full field wavefront reconstructor. Determine the covariances
of the real and imaginary parts of the measurement plane field and use the
minimum variance formalism developed by Wallner to estimate the real and

imaginary parts of the field. The inputs to the full field minimum variance
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wavefront reconstructor can be the point irradiances on a measurement plane
sampling grid. The measurement plane point irradiance is given by multi-
plying the real and imaginary parts of the measurement plane field by their
complex conjugates. The field at any given sampling point can be described by
circularly complex Gaussian random variables. The aperture averaged mean
squared field error and the optimal reconstruction matrix can be determined
in a similar fashion using the methods of Wallner [12]. Instead of requiring the
measurement plane phase covariances, the covariances of all possible combina-
tions of the real and imaginary part of the field are required. The advantage of
the full field reconstructor is that the real and imaginary parts of the field are
continuous. The full field reconstructor would not suffer from discontinuities

and ambiguities (£m27) in the measurement plane 2D phase function.

. Further investigate sampling requirements in the minimum variance wavefront
reconstructor. The implementation of the minimum variance wavefront recon-
structor needs to be optimized for speed. Use of table look ups, faster inte-
gration routines, and re-assessing the indexing scheme would lead to a faster
version of the minimum variance reconstructor. The increase in speed would

permit investigating the reconstruction of more spatially complicated objects.

. Incorporate amplitude statistics in the minimum variance wavefront recon-
structor. In the current minimum variance wavefront reconstructor, the ampli-
tude estimates are assumed to be perfectly known. In actuality, the amplitude
of the complex representation of the measurement plane field is also a random

quantity and should be included in the estimation process.

. Include the effect of finite pixel width in the measurement plane detection pro-
cess. The interpolation feature of the minimum variance and new least squares
elementary functions allows for modeling and assessing the performance of the
reconstructor for detectors with finite dimensions such as Charge-Coupled De-

vice (CCD) cameras. In a sparsely sampled aperture such as the coarse grid,
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relay optics can be used to map measurement plane sample points to center
pixel values on a CCD camera. The projection of the pixel into the measure-
ment plane gives each measurement plane sampling element finite extent. The
finite detector pixel widths will blur the estimates of the phase differences.
The phase difference blurring introduces an error into the reconstruction pro-
cess which needs to be characterized. Incorporating the effect of the finite
dimensions of the measurement plane sampling elements requires integration
over the measurement plane. The minimum variance and new least squares re-
constructor readily permits this integration since the elementary functions are
defined everywhere in the measurement plane. For a conventional least squares
reconstructor as discussed in Section 2.2, either additional sampling is required
or an interpolation feature needs to be added to allow the measurement plane

integration.

5. Investigate the performance of the minimum variance reconstructor under low

light level conditions.

6. Investigate extending the range of the detectable phase difference measure-
ments in the SCIP technique to the region of £27. The extension of the range
appears to improve the quality of the reconstruction. Trade-off studies be-
tween increased illuminator complexity and a potential relaxation of sampling

requirements in the measurement plane can be accomplished.

7. Evaluate the performance of the minimum variance reconstructor for other

techniques besides SCIP.

The above list describes some of the more interesting areas of research identified
during the course of this work. The potentially most useful topic is the development
of the full field wavefront reconstructor discussed in item (1). A specific implemen-

tation based on non-SCIP phase differences (phase differences which are sensitive to

atmospheric aberrations) seems feasible.
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